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1. Introduction

Throughout this paper all rings are commutative with identity and
modules are unitary. Let M be an R-module and N — a submodule. The
colon ideal of M into N is theideal (N:M) ={r € R:vrM < N } of R. A proper
subbmodule P of M is called a prime submodule or p-prime submodule of M if
for p = (P: M), whenever rx € P forr e Rand x € M, we have r eporx € P
[13]. The intersection of all prime submodules of M containing N, denoted by
rad(N), is called prime radical (or simply, radical) of N [15]. The radical of
an ideal 1 will be denoted by+/I. The prime spectrum of , denoted by Spec(M)
is the set of all prime submodules of M. If Spec(M) =@, then M is called
primeless [14] . For p € Spec(R), we denote Spec,(M)as the set of all p-

prime submodules of M [13]. Put V(N) ={P € Spec(M):P 2 N} } and

{(M) = {V(N):N is a submodule of M}. Then there exists a topology z, called
quasi Zariski topology on Spec(M) , having {(M) as the set of closed subsets
of Spec(M) if and only if {(M) is closed under the finite union. In this case,
M is called a top R-module [14]. We say that a submodule N of satisfies the
primeful property if for every prime ideal p containing (N: M) there exists
P € V(N) such that (P: M) = p. Also M is called primeful if M = 0 or the zero
submodule of M satisfying the primeful property [9]. If N is a submodule, then
(rad(N): M) = \/(N: M). A proper submodule Q of M is called a primary-like
submodule whenever rx € Q for r € R and x € M, we have r € (Q: M) or
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x € rad(Q) [8]. If Q is a primary-like submodule of M satisfying the primeful
property, then (Q: M) is a primary ideal of R [8, Lemma 2.1]. In this case, Q is
called a p-primary-like submodule of M, where p =./(Q: M). The primary-like
spectrum of M, denoted by Spec; (M), is the set of all primary-like submodules of
M satisfying the primeful property [8]. Also we set

X, ={Q € Spec,(M):\[(Q: M) = p}.

Recently, modules whose spectrums having various types of Zariski
topologies have been received a good deal of attention (see for example [1, 3,
11, 14, 16]). Hereafter, we study the algebraic properties of a new class of
modules which are equipped with a new Zariski topology, called Zariski-like
topology, defined as follows. Let N be a submodule of an R-module M. We
set v(N) = {Q € Spec,(M): N < rad(N)}. Some elementary facts about v have
been in the following lemma.

Lemma 1. Let M be an R-module. Let N, N"and {N;:i € I} be submodules of
M. Then the following statements hold.

1) v(M) = ¢.

(2) v(0) = Spec, (M).

®) Nier vV = v(Tier V).

(4) v(M)Uv(N") € u(NNN").

(5) v(N) = v(rad(N)).

Put n(M) = {u(N): N is a submodule of M}. From (1), (2), (3) and (4) in
Lemma 1, we can easily that there exists a topology, T say, on
Scpe, (M). A module M is called a top-like module if n(M) induces the
topology 7. In Section 2, we study a class of R-modules whose primary-
like spectrum is empty, called modules with empty primary-like spectrum or
for short WEPS modules. We show that primeless R-modules are WEPS and
the converse is true if R is a zero-dimensional ring (Lemma 2). In particular,
every torsion divisible R-module is WEPS, however WEPS modules are
neither torsion nor divisible in general (Example 1). In Section 3, for a
moduleM over an Artinian ring R we show that:

M is locally cyclic = M is top-like= My, is a top-like R,,-module.
Moreover, if M is finitely generated, then these conditions are equivalent
(Theorem 1). An R-module M is called a multiplication module if for
every submodule N of M, there exits an ideal I of R such that N =IM. In
this case, we can take I = (N:M) [5]. An R-module M is called weak
multiplication if each prime submodule P of M has the form IM for some
deal I of R [4]. Since the zero submodule of Z-module @ of rational numbers
is the only prime submodule of @@, then @ is a weak multiplication module,
which is not multiplication. In Theorem 4 of Section 4, it is shown that every
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multiplication module is top-like. In particular, if M is a finitely generated
module, then M is top-like & M is top < M is multiplication.
Also it is proved that if M is a weak multiplication module over a PID

such that for every Q € Spec, (M), /(Q:M) =0, then p is top-like
(Theorem 5). By Example 5, we see that the converse dose not

necessarily true.

2. Modules with empty primary-like spectrum

Hereafter we denote Spec, (M) by X. Recall that an R-module M is said to
be with empty primary-like spectrum or for short WEPS if X’ = @. Note that
we are not excluding the trivial case where X is empty; WEPS modules are top-
like modules. Clearly, zero module is WEPS and primeless. As nontrivial
example the Z-module Z(p®) is WEPS (see [14, P. 81] and Lemma 2.1). Also
for the T -module Q of rational numbers Spec(Q) = 0, i.e. Qs not primeless,
however @ is WEPS since the submodule 0 of @ dose not satisfy the primeful

property.
Lemma 2. Let M be an R-module. Consider the following statements.

(1) pM = M for every p € V(Ann(M));

(2) M is primeless;

(3) M is WEPS;

(4) mM = M for every maximal ideal m of R.

Then (1) = (2) = (3) = (4). Moreover, if R is a zero-dimensional ring, then
4) = (1)

Proof. (1) = (2) Suppose on the contrary that P is a prime submodule of .
Thus (P:M)M =M by (1) and so P =M, a contradiction. (2) = (3)
Suppose Q € X. Since Q satisfies the primful property, there exists a prime
submodule Q of M containing Q which is a contradiction.

(3) = (4) Assume the contrary, mM # M for some maximal ideal m of R.
Thus (mM: M) # R- Hence (mM: M) = m and so by [14, Corollary 1.2], mM is
a prime submodule of . Itis easily seen that € X, i.e. M is not WEPS.

(4) = (1) is clear.

Lemma 3. If M is a WEPS R-module, then M is not finitely generated and
multiplication.
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Proof. If M is either finitely generated or multiplication, M has a maximal
submodule . It is evident that m satisfies the primeful property and m € X.
Thus M is not WEPS.

In [14, Lemma 1.3 (1)], it has been shown that any torsion divisible

module over a domain R is primeless and so by Lemma 2.1 is WEPS. In
general, a WEPS module is not torsion. It is clear that the Z-module @ is
WEPS which is also torsion-free. In the following a WEPS module is given
which is not divisible.
Example 1. Let R = K|[x,y], the domain of polynomials over a field K .
Let m = Rx + Ry. Then the R/m-module R/m is an injective hull of R/m
since R/m is a field ([18, p. 50 Example]). Thus R/m = E(R/m), a
divisible R/m-module ([18, Remark before Proposition 2.22 and Proposition
2.6]). On the other hand since E(R/m) is an essential extension of R/m, it is easily
seen that E(R/m) is a torsion R-module. Thus by [14, Lemma 1.3 (1)] R/m =
E(R/m)is a primeless R-module and so by Lemma 1 it is a WEPS R-module.
However, R/m is not a divisible R-module because for x € m = Rx + Ry and
1+meR/m there is no f+meR/m such that x(f+m)=1+m.
Equivalently, thereisno g € msuch thatxf + g = 1.

In the following we give conditions under which a WEPS module is
divisible.

Proposition 1. Let R be a one-dimensional Noetherian domainand M be a
module over R. If M is a WEPS module, then M is divisible.

Proof. Suppose that M is a WEPS R-module. By Lemma 2, M = mM for every
maximal ideal m of R. Assume 0 # r € R. Since R is one-dimensional domain,
the ring R/Rr is zero- dimensional Noetherian and so is Artinian. So
my,...,m, S Rr for some positive integer n and maximal ideals m; (1 <i <n)
of R. Hence M =mM =mym,M =m; .. mMSrMcMandsoM =rM =
rM. Thus M is divisible.

Let N be a submodule of M. In [8, Corollary 3.5] we showed that every
primary-like submodule of M/N satisfying the primeful property has the form
Q/N, where Q € X and N € Q. Thus any homomorphic image of a WEPS
module is WEPS. In particular, if M = ®@;¢;M; is a WEPS module, then for
every i € I, M; is WEPS. The converse holds, if R is a zero-dimensinal ring (see
[14, Proposition 1 .7] and Lemma 2.1). Also if for every i € I, M; is a primeless
module, then M = ®;¢;M; is a WEPS module (see [14, Proposition 1.7] and
Lemma 2.1). In the following we investigate the similar assertion for direct product
of modules.

35



PROCEEDINGS OF IAM, V.3, N.1, 2014

Lemma 4. Let M be an R-module. If Q is a primary-like submodule of M and N a
submodule of M such that rad(Q) Nrad(N) =rad(Q N N), then N<SQ or
Q N N is a primary-like submodule of N.

Proof. Let N2Q and for n€e N, rne QNN such that r ¢ (Q N N:N). It
implies that rn € Q and r & (Q: M). Since Q is a primary-like submodule of M,
we have n € rad(Q) N N, and so by our assumption n € rad(Q NN). Thus
Q N N is a primary-like submodule of N.

Proposition 2. Let M; (i € I) be R-modules and M =M;¢; M;. Let rad(Q) N
rad(N) = rad(Q n N) for every primary-like submodule Q of M; and every
submodule N of M;. Then M is a WEPS module if and only if M; is WEPS
for everyi €1.

Proof. Suppose M; is WEPS and M is not WEPS. Assume Q € X. Then
QNM; = M; for each i €, by Lemma 4. Hence M; € Q for each i € I. Thus
M c Q, a contradiction. The converse follows from the fact that every
homomorphic image of a WEPS module is WEPS.

Proposition 3. Let M be an R-module such that for every primary-like
submodule Q of M and every submodule N of M we have rad(Q) Nnrad(N) =
rad(Q N N). Then if 0->M —->M —>M" -0 is an exact sequence of R-

modules such that M’ and M"" are both WEPS, then M is WEPS.

Proof. Suppose that Q € X. ThenQ n f(M) = f(M), by Lemma 4 and so
f(M" € Q. Hence Q/f(M") is a primary-like submodule of M/f(M) satisfying
the primeful property by [8, Corollary 3.5], which is a contradiction since
M/f(M"Y = M"and M"is WEPS. Thus M is WEPS.

For the converse of Proposition 2.3, the homomorphic image of a WEPS module is
WEPS. But the submodules of a WEPS module is not necessarily WEPS, even
if rad(Q) Nrad(N) = rad(Q n N) for every primary-like submodule Q of M
and every submodule N of M. The E-module @ is WWPS, while the Z-module
T is not WEPS. In fact Spec,(Z) = {0}U{p™Z: n € N}. Also since Spec(Q) =
0, then for every primary-like submodule Q of @ and every submodule N of @
either rad(Q) Nnrad(N) =rad(Q N N) = 0or rad(Q) Nnrad(N) =
rad(Q N N) = Q.

3. Top-like modules

A submodule N of an R-module M is called semiprime. If N is an intersection
of prime submodules. We say that a submodule Q € X is phenomenal if
whenever N and L are semiprime submodules of M with NN L < rad(Q),
then N S rad(Q) or N € rad(Q).

Theorem 1. Let M be an R-module. Consider the following statements.
(1) Every Q € X is phenomenal;
(2) y(N) Uu(L) = v(N n L) for any submodules N and L of M,
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(3) M is a top-like module.

Then(1)=(2)=(3) Furthermore, if every prime submodule of M
satisfies the primeful property, then (3)=(1).
Proof. (1) = (2) Let N and L be semiprime submodules of M. Clearly
v(IN)Uv(L) Su(NNL). Let Qev(NNnL). Then NNnL S rad(Q) and hence
N € rad(Q)or L € rad(Q). Thus v(N nL) € v(N) Uuv(L).
(2) = (3) Assume N and L be submodules of . If v(N) is empty, then
v(N) Uvu(L) =v(N nL). Suppose that v(N)and wv(L)are both non-empty.
Then v(N) Uu(L) = v((radN)) Uv(rad(L)) = v(rad(N) nrad(L)), by
Lemma 1.
(3= (1) Let Q €eX and let N and L be semiprime submodules of M such
that NN L € rad(Q). By hypothesis, there exists a submodule K of M such
that v(N) Uvu(L) = v(K). Since N = N P; , for some collection of prime
submodules P; (i €l), for each i€l, P,ev(N)<Sv(K) and so K € P;.
Thus K € NP, =N. Similarly K€ L. Thus K € NnL. Hence we have
v(N)Uv(L) Suv(NnL) Sv(K) <v(N)Uuv(L). It follows that v(N)U
v(L) =v(NNnL). Now from Q eu(NnNnL). we have Q € u(N)or Q € u(N),
i.e. N Srad(Q)or L € rad(Q).
Corollary 1. Let Mbe an R-module. Then the conditions (1), (2) and (3)
in Theorem 3.1 are equivalent in each of the following cases.

(1) M is a finitely generated module.
(2) M isaprimeful module and every prime submodule of M has the form pM
for some prime ideal p € V(Ann(M)).

Proof. (1) follows from [9, Theorem 2.2] and Theorem 1.

(2) follows from [9, Proposition 4.5] and Theorem 3.1.

Corollary 2. Any homomorphic image of a top-like R-module is top-like. In
particular every cyclic module is top-like.

Proof. Let N be asubmodule of atop-like R-module M. Then the primary-
like submodules of M/N which satisfy the primeful property are precisely
the submodules @Q/N, where Q is a primary-like submodule of M satisfying
the primeful property with N < Q [8, Corollary 3.5]. Similarly every prime
(semiprime) submodule of M/N has the form K/N, where K is a prime
(semiprime) submodule of M containing N [14, Lemma 1.1]. Hence we
have rad(Q/N) =rad(Q)/N. Thus by Theorem 1 M/N is a top-like R-
module. In particular if M" is a homomorphic image of a top-like module M
under a surjective homomorphism ¢, then M = M /Ker@ and so by the above
argument M’ is top-like.

Corollary 3. Let SS R beringsand M be an R-module such that the S-
module M is a top-like module. Thenthe R-module M is a top-like module.
Proof. Let Q be a primary-like R-submodule of M satisfying the primeful
property. It is clear that Q is a primary-like S-submodule of M satisfying the
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primeful property. Let N and L be semiprime R-submodule of M such
that NNL S rad(Q). Hence N CSrad(Q) or L Srad(Q), since N and
L are also semiprime S-submodule of M. Thus Q is phenomenal and so by
Theorem 1, M is a top-like R-module.

Lemma 5. Let R be a field. Then there exists a phenomenal submodule
Q € X ifand only if M is a one-dimensional vector space over R.

Proof. Suppose M is one-dimensional. Since every proper submodule of M is
a prime submodule, P = 0 is the only prime submodule of M. So it is easily
seen that P € X and P is a phenomenal submodule. Conversely, suppose on
the contrary that M is not one-dimensional and Q € X is phenomenal. Since
Q is a proper submodule and so is a prime submodule, rad(Q) =Q and
dimgkM # 0. So dimgM > 2. Assume dimgM = 2. Thus there exist non-
zero elements m,, m, € M such that Rm,; N Rm, = 0. Since Q is phenomenal,
Q #0. Assume thatme M\ Q and 0 g€ Q. SoORm and R(m + q) are
subspaces of M with RmNR(m+q)=0<Q but RmZQ and R(m +
q) € Q, a contradiction.

Theorem 2. Let mbe a maximal ideal of R and M a top-like R-module.
Then M/mM is a cyclic R-module.

Proof. Suppose that M #= mM. In this case M/mM is a non-zero vector
space over the field R/m and every proper subspace is primary-like and satisfies
the primeful property. Since M is a top-like module, M/mM is a top-like
R/m-module by Corollary 2. Hence M/mM contains a phenomenal
submodule by Theorem 2. Now Lemma 5 shows that M/mM is one-
dimensional over R/m, i.e. M/mM is a cyclic R-module.

In Corollary 2, we showed that top-like modules are closed under

guotient. Now we use from Theorem 2 to show that a submodule of a top-
like module is not necessarily top-like.
Example 2. Let M = Q ® Z,, where Z, be the cyclic group of order M.
Then Spec(M) = {Q@®0, 0®Z,} by [14, Example 2.6].Clearly if N is a
submodule of M such that N € Q®0 or N,¢_O®Zp, then N dose not
satisfy the primeful property. Also if N € 0®Z,, then (N:M) =0 and so N
dose not satisfy the primeful property. Consider the only remaining case
N € Q®0. In this case, if (N:M) =pZ, then N =Q@0and so QP 0 € X.
If (N:M) =0, then N does not satisfy the primeful property. The finial
case is 0 c (N:M) c pZ. In this case if N is a primary-like submodule
satisfying the primeful property, then (N:M) = p'Z for some i>1, since
(N:M) is a primary ideal of R. Assume i =1 and (0,b) € M\ Q®0 . Now
we have p(0,b) = (0,0), follows p € p'Z which is a contradiction. Therefore
X ={Q®0} . Hence M is a top-like Z -module by Theorem 3.1. Put = Z®Z,
Hence by Theorem 2 N is not top-like, since N/pN = Z,®Z, , a non-cyclic Z-
module.
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Corollary 4. Let F be a free R-module. Then the following statements are
equivalent.

(1) F is top-like;

(2) F is top;

(3) F is cyclic.

Proof. (1) = (3) Suppose that F is top-like. Hence F/mF is a cyclic R/m-
module by Theorem 3.2. Thus F is cyclic.

(3) = (1) follows from Corollary 2.

(2) & (3) holds by [14, Corollary 2.5].

Corollary 5. Let R beasemi-local ring and M be an R-module. Then the
following statements are equivalent.

(1) M is top-like;

(2) M is top;

(3) M is cyclic.

Proof. (1) = (3) Assume that M is a top-like module. Since R is semi-
local, R is containing precisely finite distinct maximal ideals. Suppose my, ..., m,
denote the distinct maximal ideals of R, where n is a positive integer. By
Theorem 3.2 M/m;M is cyclic for each 1 <i <n. Thus M is cyclic.

(3) = (1) follows from Corollary 2.

(2) & (3) holds by [14, Corollary 2.5].

Let N be a submodule of an R-module M and p €S € pecc(R). The
saturation S,(N) of N with respect to p is the contraction of N, in M
[10]. In [14, P. 92] it has been shown that for every submodule N of M
and for any R,-submodule L of M, , (R,N)nM =S,(N) and L =R,(LnN
M).

Lemma 6. Let m be a maximal ideal of a ring R. If Q is an m-primary-
like submodule of M satisfying the primeful property, then rad(Q) is an m-
prime submodule of M.

Proof. Since Q satisfies the primeful property, we have (rad(Q):M) =
\(Q:M) =m. Suppose rx € rad(Q) with reR\m and x € M. Then
x = tx + srx, for some s € Rand t € m and therefore x € rad(Q).
Proposition 4. Let R be an Artinian ring and M be a top-like R-
module. Then Mp is atop-like R,-module for every prime ideal p of R.
Proof. Let Q be a primary-like submodule of the R,,-module Mp satisfying the
primeful property. Then it is easily verified that Q N M is a primary-like
submodule of M satisfying the primeful property. Now if N and L are
semiprime submodules of Mp with NN L < rad(Q), thenNNM and LNM
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are semiprime submodules of M with (NNM)n (LN M) S rad(Q) N M.
Since R is an Artinian ring, rad(Q) is a prime submodule of Mp by Lemma
3.2. S0 rad(Q) N M is a prime submodule of M. Since M is a top-like
module, by [6, Theorem 2.16] M is a top module. Hence by [14, Lemma 2.1],
NNMcCrad(QQNnM or LNMCrad(Q)nM. It follows that N =
R,(NN M) € R,(rad(Q) N M) = rad(Q) or L<Srad(Q). Thus Q is
phenomenal and so Mp is a top-like R,-module by Theorem 1.
Proposition 5. Let Mp be a top-like R,-module and every prime
submodule of Mp /Rp(pM) satisfies the primeful property for every prime
ideal p of R. Then S,(rad(Q)) =S,(PM) or S,(rad(Q)) = M for every
Q € X,.
Proof. Suppose that Q € X,. So pM S rad(Q). It follows that R,(pM) <
R,rad(Q) €M, . By Theorem 3.2, Mp /Ry (pM) is cyclic so that
R,rad(Q) = R,(pM) or R,rad(Q) = M,. Now, let R,rad(Q) = R,(pM)-
Then S,(rad(Q)) = Ryrad(Q) N M = R,(pM) N M = S, (pM). If
R,rad(Q) = M, then s (rad(Q)) = Ryrad(Q) N M = R,M, N M = M.

An R-module M is called locally cyclic if Mp is a cyclic module over
the local ring R, forevery prime ideal p of R.
Theorem 3. Let R be an Artinian ring and M be an R-module.
Consider the following statements.
(1) M is cyclic.
(2) M is locally cyclic.
(3) M is top-like.
(4) Mp is a top-like R,-module for every prime ideal p of R.
(5) rad(Q) = S,(pM) for every Q € X,.
(6) M/rad(pM) is a cyclic module for every prime ideal p of R.
(7) M/pM is a cyclic module for every prime ideal p of R.
Then (1) = (2) = (3) = (4) = (5) = (6) = (7). Furthermore, if M is
finitely generated, then (7) = (1).
Proof. (1) = (2) is clear.
(2) = (3) Suppose Q € X and p = \/(Q: M) = (rad(Q): M). Let N and L be
semiprime submodules of M with NNL<Srad(Q). Then R,NNR,LC
R,rad(Q). Note that if R,rad(Q)=M,, by Lemma 3.2 rad(Q)=M,
a contradiction. Thus R,rad(Q) # M,. But pM S rad(Q) gives R,(pM) S
R,rad(Q). Since M, is cyclic, R,rad(Q) = pR,M,. Hence R,rad(Q) is a
unique maximal submodule of the R,- module M,. Thus R,N < R,rad(Q). or
R,L € Ryrad(Q). Suppose that R,N S R,rad(Q). Then NS R,NNMC
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R,rad(Q) N M = S,(rad(Q)) = rad(Q). It follows that @ is phenomenal and
so M top-like module by Theorem 1.

(3) = (4) follows from Proposition 5.

(4) = (5) Suppose that Q € X,,. So pM S rad(Q). It follows that R, (pM) S
R,rad(Q) € M,. By [ 6, Theorem 2.16] and Theorem 2, Mp/Rp(pM) is cyclic
so that R,rad(Q) = R,(pM) or Ryrad(Q) = M,. Now, if R,rad(Q) = M, ,
then by Lemma 6 rad(Q) =M which is a contradiction. Thus we have
rad(Q) = Sy(rad(Q)) = Ryrad(Q) N M = R,(pM) N M = S,(pM).

(5) = (6) Suppose M =rad(pM).So p € (pM:M) € (rad(pM): M) =R S0
that p = (pM: M). It follows that pM is a prime submodule of M satisfying
the primeful property. Assume that x € M\ rad(pM). It implies that
p € (Rx + rad(pM): M) € R and so(Rx + rad(pM):M) = R. Thus M = Rx +
rad(pM), i.e. M /rad(pM) is cyclic.

(6) = (7) Assume that M = pM. Hence similar to the proof (5) = (6)

pM isa p-prime submodule of M andso rad(pM) = pM. Thus M /pM
is cyclic.
(7) = (1) follows from [14, Theorem 3.5] and [7, Corollary 2.9].

4. Multiplication modulesand weak multiplication modules

In this section we investigate the relationship between some certain classes
of modules, spe cially multiplication modules, and top-like modules.
Hereafter we denote Spec(M) and Spec, (M) for every p € Spec(R) by X and X,
respectively. The map : X — Spec(R/Ann(M) given by P +— (P: M)/Ann(M)
is called the natural map of X. M is said to be X-injective if either X =@ or
X # @ and the natural map of X is injective.

Theorem 4. Let M be afinitely generated R-module. Then the following
statements are equivalent.

(1) M is multiplication;

(2) M is top-like;

(3) M is top;

(4) 1Xp] < 1 for every p € Spec(R);

(5) If V(P) =V (P") for Spec(M), then P = P’;

(6) M is X-injective;

(7) Forevery submodule N of M there exists an ideal I of R such that
V(N) = V(IM);

(8) M, is atop R,-module for every prime ideal p of R;
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(9) M/mM is cyclic for every maximal ideal m of R.
Proof. (1) = (2) Suppose N and L are two submodule of . Therefore N = IM
and L =JM some ideals I and J of R. It is easy to verify that v(IM) U
v(JM) € v(IM N JM) S v(IJM). Let
Q ev(IJM). Then IJM < rad(Q). So IJ € (I/M: M) < (rad(Q): M). Hence
I € (rad(Q): M) or
J € (rad(Q):M)andso Q e v(IM) Uv(M).
(2) = (3) follows from the fact that (X,7) is a topological subspace of
&, 7).
MHe B e @e (@) e @) () isby [14, Theorem 35].
(4) & (5) < (6) follows from [11, Proposition 3.2].
Corollary 6. If M is a finitely generated top-like module over an
Artinian ring R, then M is cyclic.
The following example shows that every top-like module is not multiplication
in general.
Example 3. Let M = Z(p®)®Z,, where Z, is the cyclic group of order p.
Then (M) =pM. So M is a top-like Z-module by Theorem 1. But M is not
a multiplication Z-module by [14, Example 3.7].

An R-module M is called distributive if the lattice of its submodules
is distributive, ie. NN(L+K)=(NnNL)+ (NnK) or equivalently N +
(LNnK)=(N+L)n (N +K) for all submodules N,L and K of M [5]. Some
authors call such modules arithmetical modules. An R-module M is called a
Bezout module if every finitely generated submodule is cyclic [19]. It is easy to
see that every Bezout R-module is distributive [19, P. 307, Corollary 2].
Proposition 6. Let R be an Artinian ring and M be an R-module.
Consider the following statements.
(1) M is distributive.
(2) M is Bezout.
(3) M is top-like.
Then (1) < (2) and (2) = (3). Furthermore, if R is a local ring and M is
finitely generated, then (3) = (2).
Proof. (1) < (2) follows from [5, Propositions 4, 7].
(2) = (3) Assume Q ev(NNL) Let N £ rad(Q),n € N\ rad(Q) andl € L.
Then there exists m € M such that Rn + Rl = Rm. Thus there exist r,s € R
such that n=rm and [ = sm. Therefore sn € rad(Q). Now by Lemma
3.2 s € (rad(Q): M). In particular, sm € rad(Q), whence [ € rad(Q). This
implies that M is a top-like module.

(3) = (2) Since M is finitely generated, by Theorem 4.1 M is a
multiplication module. Hence M is cyclic by [7, Corollary 2.9]. Since R is an
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Artinian local ring, every ideal of R is principal and so every submodule of M is
cyclic.

Recall that an R-module M is called weak multiplication if each prime
submodule P of M has the form IM for some ideal I of R [4]. In this case,
we can take I = (P: M).

Theorem5 Let R be a PIDand M a weak multiplication R-module. If for

every Q € X,/(Q: M) # 0, then M is a top-like R-module.
Proof. Suppose N and L be non-zero semiprime submodules of such that
NNL<rad(Q). We show that Q is phenomenal. So by Theorem 1 M is
top-like. Since R is PID, rad(Q) is prime by Lemma 6. Hence rad(Q) = pM
for some prime ideal p of R because M is weak multiplication. Also let
{p;, i €I} and {qj, j e]} be families of maximal ideals of R such that
N =Ny p;M and L =nNj;q;M. If (N:M) < (rad(Q):M) or (L:M) &
(rad(Q): M), then N € rad(Q) or L S rad(Q) by[12, Lemma 2]. Hence we
consider just the case that (N:M) < (rad(Q):M) and (L:M)C
(rad(Q): M). Then we have N;e; p; S p and Nje; g; S p. If 1 or J is a finite set,
then the claim follows from the above arguments. So we assume that | and j are
infinite sets. Now we show that if N ¢ rad(Q) . then L < rad(Q). Suppose
n € N\ rad(Q). Therefore by [15 Lemma 2.12], (L:n) € (rad(Q):M) =
(pM:M) = p. If (L:n) =(0) , then n + L ¢ T(M/L) the torsion submodule of
M/L, SO T(M/L) = M/L. Since M is a weak multiplication module, M/L is also
a weak multiplication module. But every weak multiplication module over an
integral domain is either torsion or torsion-free by [4, Proposition 2.4(iii)]. Hence
M/L is a torsion-free R-module. On the other hand we have (L: M) < (L:n) = (0)-
Thus L € Specy(M) by [14, Lemma 1.1]. Therefore L = (0)M = M. Now we
consider our claim in the case that (L:n) = (0). In this case we set Q=
{gn & qM} . Since NNL<SpMand neN\pM , we have n €L so that
Q=+ @ .Since (q;M:n) =R if n € q;M, then we have (L:n) = (njEI q]-M:n) =
Ng., (QjM:n). But for every q; € Q (q;M:n) = q;. Hence we have (0) #
(L:n) =Ng,, q; € p- Since Ris a PID, (L:n) = (r) by some reRand r has
only a finite number of prime factors. Hence there exist only a finite number of
prime ideal containing (L:n). Thus Q is a finite set. It follows that there exists
qj € Q suchthat q; < p. Itimpliesthat L € pM = rad(Q).
The following example shows that the converse of Theorem 5 is not true in
general.
Example 4. Let M = Q®Z,. Then M is a top-like Z-module which is not
a weak multiplication module.

For any element x of an R-module M, we denote c(x) =N {I:1 is an ideal of
R. Such that x € IM}. M is called a content R-module if for every x € M,x €
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c(x)M. Every free module or, more generally every projective module is content
module [17, P. 51]. Also every faithful multiplication module is a content
module [7, Theorem 1.6].

Theorem 6. Let M be a content weak multiplication R-module. Then M is
top-like.

Proof. Let N be a semiprime submodule of , and let N =n;¢; P;, where, P; is p;-
prime submodule of M for each i € I. Since M is weak multiplication, for each
i € 1.Since M is a content module, we have N = (N: M)M. Now, assume L that is
a submodule of M. If rad(L) =M, then v(L) =v(rad(L)) = v(RM). If
rad(L) # M, then rad(L) is a semiprime submodule of M. Hence v(L) =
v(rad(L)) = v((rad(L): M)M). Thus M is top-like, by the proof (1) = (2) of
Theorem 4.
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Osas spektri Zariski tip topologiyaya malik modullar
H. Fazaeli Moghimi, F. Rashedi
XULASO

Bu isin moagsadi vahido malik kommutativ R halgas1 iizorinds yeni sinif “top-

like” adlanan modullarin Gyronilmosidir. Har bir “ist” modul Zariski-topologiyas1 olan
osas spektro malikdir. Bu sinif R-modullarin vurulmasindan alinan ailoni 6ziinds saxlayir.
Biz gotoracayik ki, M-in mohdud R-modullart yalmiz o zaman “top-like” modullar
olacaglar ki, onlar R-modullarn vurulmasindan ibarat olsunlar.

Acar sozlor: osas tip alt modul, asas xassolor, “Ust” modul, Zariski tipli

topologiya, vurma modulu, WEPS modul.
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Moy, OCHOBHOI CTIEKTP KOTOPBIX HMeeT TOMOJIOTHI0 THIIA 3aPHCKHU
H. ®azeau Moxumu, @. Pamnean
PE3IOME

Lenpto maHHOW pabOTHI SABIAETCS O3HAKOMIIEHHE M H3y4YCHHE HOBOTO Kiacca
MOAyJiel Hal KOMMYTAaTHBHBIM  KONIBLIOM C eAuHHUEeH R, HasbBaembix «top-like»
Moxynu. Kaxnplii «top-like» Momynb oGnagaeT OCHOBHBIM CIIEKTPOM € TOIOJIOTHEH THITA
3apucKu. DTOT KIIACC COACPIKUT ceMeicTBO YMHOKeHn R-momymeit. MBI mokaxem, 4To
MOPOXKICHHbIe KOHe4yHble R-momymu sBistores «top-like» R-momyns Torma m Tomeko
Torna, Kkoraa M siBisieTcs yMHOXKeHHEeM R-Momyneid.

KaroueBble coBa: MOAMOIY/b THIIA OCHOBHOTO, OCHOBHOE CBOMCTBO, top-like
MO/JIyJIb, TOTIOJIOTHS TUIIA 3apUCKOMY, MOy b yMHOXeHus, WEPS monyis.
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