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1. Introduction

Let V be a linear connection in an n-dimensional differentiable manifold

M . The torsion tensor T and the curvature tensor R of V are given

respectively by

TXY)=V, Y-V X-[XY],
RX,Y)Z=V\VyZ-V VyZ-VyZ

The connection V is symmetric if its torsion tensor T vanishes, otherwise it
iS non-symmetric. The connection V is a metric connection if there is a
Riemannian metric g in M such that Vg =0, otherwise it is non-metric. It is
well known that a linear connection is symmetric and metric if and only if it is the
Levi-Civita connection.

In [6, 15], Friedmann A. and Schouten J.A. introduced the idea of a semi-
symmetric linear connection. A linear connection V is said to be a semi-symmetric
connection if its torsion tensor T is of the form

TOXY) =u(Y)X-u(X)Y

whereu is a 1-form. In [17], Yano K. studied some properties of semi-
symmetric metric connections. Some properties of semi symmetric metric
connections are studied in [1,8- 14].

The concept of CR-submanifold of a Kahlerian manifold has been defined
by A. Bejancu [2]. Later, A. Bejancu and N. Papaghiue [3], introduced and
studied the notion of semi-invariant submanifold of a Sasakian manifold.
These submanifolds are closely related to CR-submanifolds in a Kahlerian
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manifold. However the existence of the structure vector field implies some
important changes.

The paper is organized as follows: In the first section, we recall some results
and formulae for the later use. In the second section, we prove the existence
of a Kahler structure on M and the existence of a globally metric frame f-
structure in sence of S.I. Goldberg-K. Yano. The third section is concerned
with integrability of distributions on M and geometry of their leaves.

2.  Preliminaries

Let M be areal (2n+1) dimensional differentiable manifold, endowed with
an almost contact metric structure (f,£,7,9) . Then we have from
(@) f2=—1+n®¢,
(b) 7(&)=1
Inof=0; @
d) £(5)=0;
(€) n(X)=9(X,3);
() 9(fX, fY)=g(X,Y) —n(X)n(Y),
for any vector field X,Y tangent to M, where | is the identity on the tangent
bundle TM of M . Throughout the paper, all manifolds and maps are
differentiable of classC”.We denote by F(M) the algebra of the differentiable
functions on M and by F(E) the F(M)module of the sections of a vector
bundle E over M .
The Niyembuis tensor field, denoted by N, with respect to the tensor
field f , is given by
N, (X,Y)=[X, fY]+ f2[X,Y]- f[ X, Y]+ f[X, fY],

vV X,Y eI'(TM)
and the fundamental 2-form is given by
DLYY= g fY) vX,Y eT(TM). 2

The curvature tensor field of M , denoted by R with respect to the Levi-
Civita connection ?, is defined by
RX,Y)Z=V,V\Z-V,V,Z-Vy\yZ VX,Ye[(TM) (3)

Definition 1 (a) An almost contact metric manifold M (f,&,77,9) is called
normal if
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N, (X,Y)+2dn(X,Y)E=0 VXY e[(TM). 4)
Or equivalently (cf. [6] )
(Vi DY = F(V, F)Y —g(V(&EY)E VXY eD(TM);
(b) The normal almost contact metric manifold M s called cosymplectic if
deg=dn=10
Let M be an almost contact metric manifold M . According to [7] we say that
M is a quasi-Sasakian manifold if and only if & isakilling vector field and

(Vx f)Y = g(vfxle)i_ﬂ(Y)vfxg v XY EF(T'W)- )
Next we define a tensor field F of type (1) by
FX =-V,& VX e(TM). (6)

Lemma 1. Let M be a quasi-Sasakian manifold. Then we have
@ (V.f)X=0 vXeIram);

(b) foF = Fof;
| FE=0;

(@ g(FX,)Y)+g(X,FY)=0 VvV X,Y e[(TM); (7)
(e) moF=0;

M (VL F)Y =R(& X)Y v X,Y eI (TM);

The tersor field f defined on M an f —structure in sense of K. Yano that is

fi+f=0.

Definition 2. The quasi-Sasakian manifold M is said to be of rank 2p +1 iff
nA(dn)P=0 and (d 77)"*1:0.

Example. Let (.£.7,9) the almost contact metric structure defined by

0 0 0 1 0 0 0]
0 0 0 0 1 00
0 0 0 0 0 10
[t"]=</-1 0 0 0o o o0 0
0 -1 0 0 0 00
0 0 -1 0 0 00
0 0 0 2y' 2y> 0 0

and
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1+4yH)? 4yly? 0 0 0 0 -2yt
4y'y?  1+4(y®)* 0 0 0 0 -2y?
0 0 1000 O
[1]=] o 0 0100 0
0 0 0010 O
0 0 0001 O
-2yt -2y 0000 1
1

£=(0000001f , p-gz-2y'dy-2y‘dy’.
It is easy to see that the above structure is a quasi Sasakian structure of rank 5.
Now we define a connection V on M as
VY =V Y +7(Y)X —g(X,Y)& (8)
such that Vyg=0 for anyX,Y eTM, where Vy is the Riemannian

connection with respect to g on M . The connection Vis semi symmetric
because
TXY)=V, Y =V, X-[X,Y]=n(Y)X-n(X)Y.
Using (8) in (5), we have
(Vi )Y =9(V & Y)E—a(X, FY)E=n(Y)Vy & —n(Y) X )
VE=—FX + X —n(X)&. (10)
Let M be hypersurface of a semi symmetric metric connection in a quasi-
Sasakian manifold M and denote by N the unit vector field normal to M . Denote
by the same symbol g the induced tensor metric on M , by V the induced levi-
Civita connection on M and by TM *the normal vector bundle to M .The Gauss

and Weingarton of hypersurface of a semi symmetric metric connection in a quasi-
Sasakian manifold are

(@ V4Y=V,Y+B(X,Y)N; (11)
(b) VN =—AX,

where A is the shape operator with respect to the section N . It is known that
B(X,Y)=g(AX)Y) VX,Y e['(TM) (12)

Because the position of the structure vector field with respect to M is very
important we prove the following results.
Theorem 1. Let M be a hypersurface of a semi symmetric metric connection in a

quasi-Sasakian manifold M . If the structure vector field & is normal to M then
M is cosympletic manifold and M is totally geodesic immersed in M .

Proof: Because M s quasi-Sasakian manifold, then it is normal and
d¢ =0 ([4]). By direct calculation using (11) (b), we infer
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dn(X.Y) =%{(?Xn)m—(mxxn:%{g(vxav)—g(?v«:, X)}

2dn(X,Y)=g(AY,X)-g(AX,Y)=0 VX,YeT(TM); (13)
From (11) (b) and (13) we deduce
0=dn(X,¥) = AT ) - (7,0} =
L B (14)
=§{9(Vx§,Y)—g(VY§,X)}=

=9(Y,V4&) =-g(AX,Y) VX,Yel(TM),
which proves that M is totally geodesic. From (14) we obtain vxg =0
v X e(TM) By using (10), (7) (b) and (1) (d) from the above relation we state
— (V&) + X =V, &, vV X e[(TM), (15)

because fX eT'(TM) V X eI'(TM) . Using (15) and the fact that & is not
killing vector field, we deduce d7 #0.
Next we consider only the hypersurface which are tangent to&. Denote by
U = fN and from (1) (f), we deduce g(U,U)=1. Moreover it is easy to see that
U eT'(TM) .Denote by D* = Span{U} the 1-dimensional distribution generated
by U, and by D the orthogonal complement of D" @{&} in TM . It is easy to
see that

fD=D, D" cTM*,TM =D® D" ®{&}, (16)
where @ denote the orthogonal direct sum. According with [2] from (16) we
deduce that M is a CR-submanifold of M .
Definition 3. A CR-submanifold M of a quasi-Sasakian manifold M is called
CR-product if both distributions D @®{&} and D* are integrable and their leaves
are totally geodesic submanifold of M .
Denote by P the projection morphism of TM to D and using the decomposion in
(14) we deduce

X =PX +a(X)U +n(X)& v X el'(TM), (17)

X = fPX +a(X) fU +n(fX)& =
= fPX —a(X)N.

Since U=1N, fU=f*N=-N+n(N)é=-N+g(N,&Eé=-N
where ais a 1-form on M defined by a(X)=g(X,U) VX eI'(TM). From
(17) using (1) we infer

X =tX —a(X)N, VXel'(TM), (18)
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where tis a tensor field defined by tX = fPX , X eI'(TM)
It is easy to see that

@ t&=0; (19)
(b) tU =0.

3. Induced structures on a hypersurface of a semi symmetric metric
connection in a quasi-sasakian manifold

The purpose of this section is to study the existence of some induced structure on a
hypersurface of a semi symmetric metric connection in a quasi-Sasakian manifold.

Let M be a hypersurface of a quasi-sasakian manifold M . From (1) (a), (18) and
(19) we obtain t*+t =0, that is the tensor field t defines an f structure on
M in sense of Yano K. [11]. Moreover, from (1) (a), (18), (19) we infer

t’X ==X +a(X)U +7(X)¢ VX eIl(TM). (20)
Lemma 2. On a hypersurface of a semi symmetric non-metric connection M in a

quasi-Sasakian manifold of a quasi-Sasakian manifold M the tensor field
t satisfies

(@ 9(tX,tY)=g(X,Y)-n(X)n(Y)-a(X)a(Y), (21)
() gtX,Y)+g(X,tY)=0 V X,Y eI'(TM).

Proof. From (1) (f), and (18) we deduce

9(X,Y)—n(X)n(Y)=g(fX, fY)=g(tX —a(X)N,tY —a(Y)N)
=g(X,tY)—a(Y)g(tX,N)—a(X)g(N,tY)+a(X)a(Y)g(N,N)
=g(X,tY) +a(X)a(Y),

VX,Y eI'(TM)
g(tX,ty) =g(X,Y)-n(X)n(Y)—a(X)a(Y)

() g, Y)+g(X,tY)=g(fX +a(X)N,Y)+g(X, fY +a(Y)N)

=g(fX,Y)+a(X)g(N,Y)+g(X, fY)+a(Y)g(X,N)
=g(fX,Y)+g(X, fY)=0.
And assertion (a) is proved. Assertion (b) follows from (20) and (21) (a).
Lemma 3. Let M be a hypersurface of a semi symmetric metric connection in a

quasi-Sasakian manifold M . Then we have
() FU=TAZ () FN=AZ (0 [U.&]=0 (22)
Proof. Wetake X =U and Y =& in (5)
f(V,&)=-VyE-N.
Then using (1) (a), (10), (11) (b), we deduce the assertion (a). The assertion (b)
follows from (1) (a), (7) (b) and (11) (b) we derive
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7§U = (%f)N + fﬁgN =—fA&=-FU =§U§,
[Uaé:]:vuf_vgu :§u§_vU§:0,
which prove assertion 1. By using the decompositionTM =TM @TM *, we deduce
FX =aX —n(AX)N, VX eT(TM), (23)
where o« is a tensor field of type (1) on M, since
g(FX,N)=-g(X,FN)=-g(X,Ad) =—n(AX), X eI['(TM). By using (9),
(10), (11), (18) and (20), we obtain
Theorem 2. Let M be a hypersurface of a semi symmetric metric connection in a
quasi-Sasakian manifold M . Then the covariant derivative of a tensors t,a,nand
o are given by
(V)Y =g(FX, fY)E+n(Y)[atX —
@ (AX)U —21X] - a(Y)AX + B(X,Y)U (24)
(b) (Vxa)Y =B(X,tY)+n(Y)n(AX),

L (Vxm)Y =9(Y, V&)
d) (Vi)Y =R(&, X)Y +B(X,Y)AE —n(AY)AX VXY eT(TM),
respectively, where R is the curvature tensor field of M .
From (9), (10), (19) (a) (b) and (24) (a) we get
Proposition 3.1. On a hypersurface of a semi symmetric metric connection M in a
quasi-Sasakian manifold M , we have
(@ VU =—AX —n(X)U +n(AX)S, (25)
(b) B(X,U)=a(AX) vV X e(TM).
Next we state
Theorem 3. Let M be a hypersurface of a semi symmetric metric connection in a
quasi-Sasakian manifold M . The tensor field t is a parallel with respect to the
Levi Civita connection V on M iff
(@) AX =n(AX)E+a(AX)U and (26)
(b) FX =n(AX)U —p(AX)N +2X =2(X)¢, VX el(TM)
Proof. Suppose that the tensor field t is parallel with respectto V, thatis Vt =0.
By using (5) (a), we deduce
n()[ta(X) —n(AX)U =2 X |-a(Y)AX + g(FX, fY)& + (27)
+B(X,Y)U +2g(fX,Y)¢=0 vVX,Y el'(TM).
Take Y =U in (27) and using (11) (b), (12), (25) (b) we infer
nU)[ta(X) - n(AX)U - 21X |- a(U)AX +
+g(FX, fUu)é +2g(fX,U)¢+B(X,U)U =0
nU)=0, aU)=-1, g(X,N)=0
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- AX +g(FX, fU)¢é—-2g(X, fU)S+a(AX)U =0
AX =g(FX,—N)¢ +a(AX)U
=g(X,FN)¢ +a(AX)U
=g(X,Ad)¢ +a(AX)U =n(AX)E +a(AX)U.
And the assertion (25) (a) is proved. Next let Y = fZ,Z €I'(D)in (27) and using
Q) (P, (7) (b), (22) (a) (b), (26) (a), we deduce
g(X,FZ)=0= FX =n(AX)U —n(AX)N +2X -2(X)¢é VX el'(TM).
The proof is complete.
Proposition 2. Let M be a hypersurface of a semi symmetric metric connection in
a quasi-Sasakian manifold M . Then we have the assertions
@ (Vya)Y =0 V,U =—p(X)U
) (Vin)Y =0V, E=0 VXY e['(TM).
Proof. Let X,Y eI'(TM) and using (12), (21) (b), (24) (b) and (25) (a) we obtain
9(VxU,Y)=g(AX +n(AtX)S —n(X)U,Y) =
=g(-tAX,Y) + n(AtX)g(&,Y) —n(X)gU,Y) =
=g(AX,tY) + n(AtX)n(Y) - n(X)a(Y) =
=(Vxa)Y —n(X)a(Y);
g(Vy U +7(X)U,Y) = (V a)Y
= (Via)Y =0V, U=-—n(X)U.
which proves assertion (a).

The assertion (b) is consequence of the fact that ¢ jsnota killing vector field.
According to Theorem 2 in [13], the tensor field

f=t+7®U-a®¢,
defines an almost complex structure on M . Moreover, from Proposition 2 we
deduce

Theorem 4. Let M be a hypersurface of a semi symmetric metric connection in a
quasi-Sasakian manifold M . If the tensor fields t, a, nare parallel with respect to

the connection V, then f defines a Kahler structure on M .

4. Integrability of distributions on a hypersurface of a semi symmetric
metric connection in a quasi-sasakian manifold M

In this section we established conditions for the Integrability of all
distributions on a hypersurface of a semi symmetric metric connection M in a

quasi-Sasakian manifold M . From Lemma 3 we obtain
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Corollary 1. On a hypersurface of a semi symmetric metric connection M in a
quasi-Sasakian manifold M there exists a 2-dimensional foliation determined by
the integral distribution D~ ®{£}
Theorem 5. Let M be a hypersurface of a semi symmetric non-metric connection
in a quasi-Sasakian manifold M . Then we have
() A leaf of D" @{&} is totally geodesic submanifold of M if and only if
@ AU =a(AUMU +p(AU)¢  and
(2) FN = a(FN)U.
(28)
(b) A leaf of D" @{&} is totally geodesic submanifold of M if and only if
@ AU =0 and
(2)a(FX)=a(FN)=0, VX eI'(D).
Proof. (a) Let M*be a leaf of integrable distribution D @®{£}and h* be the
second fundamental form of the immersion M* — M . By using (1) (f), and (11)
(b) we get
g(h"(U,U),X)=g(VyU, X)=g(Vy (N),X) =

= _ (29)
=g((Vy FN, X)_+ g(f(Vy N),E)
=-g(N,(V, F)X)-g(WN, fX)
=0-g(-AU, X)=g(AU, IX) VX eI(D),
and
9(h" (U, ), X) =9(Vyé, X) = g(-FU +U, X) = 30)

=g(FN, fX)+a(X) VX eIl(D).
Because g(FN,N)=0and f& =0 the assertion (a) follows from (29) and (30).
(c) Let h, be the second fundamental form of the immersion M™ — M . It is
easy to see that
h(X,Y)=h"(X,Y)+B(X,Y)N, VX,Ye[(D" ®{}). (31)
From (10) and (12) we deduce
g(h,(U,U),N)=g(h"(U,U)+B(U,U)N,N) =

=g(h"(U,U),N)=g(V,U,N), (32)
=—g(U,VyN)=-g(U,-AU) =g, AU) =a(AU)
g(h U, &),N)=g(h"(U,£),N)=g(Vy & N)=g(-FU +U,N) = 33)

=g(U,FN)=a(FN).
The assertion (b) follows from (30)-(33).
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Theorem 6. Let M be a hypersurface of a semi symmetric metric connection in a
quasi-Sasakian manifold M . Then
(a) the distribution D ®@{&} is integrable iff
g(AfX + fAX,Y) =0, VX,Y eI(D). (34)
(b) the distribution D is integrable iff (34) holds and
FX =n(AX)U —(AX)N , (equivalent with FD 1. D) vV X I'(D),
(c) The distribution D@ D™ is integrable iff FX =0,V X eI'(D).

Proof . Let X,Y eI'(D). Since V is atorsion free and & is killing vector field, we

infer
9([X,¢1,U) = g(Vx&,U) - g(V:X,U) (35)

=9(Vx&,U)+B(X,8)g(N,U)-g(V.X,U)-B(S X)g(N,U)
=g(Vx&,U)-g(V:X,U)=0, Vv X el'(D),

Using (1) (a), (11) (a) we deduce

g([X.YLU)=g(VY =V, X, U) = g(VyY -V, X, fN) =
=g(Vy X, N) - g(Vy fY,N)

=—g(f(VxY),N)+g(f(Vy X),N) =—g(Vx fY,N)+g(Vy X,N)

=-g(fY,VxN)+g(fX,VyN) =—g(AX, fY) - g(1X, AY)

=—g(fAX,Y)—g(AfX,Y)=—g(AfX + fAX,Y) Vv X,Y e(D).

Next by using (10) (7) (d) and the fact that V is a metric connection we get
9(IX,YL,&)=9(VxY,&) - 9(Vy X, &) =
=9(-Vx&Y)-9(Vk&Y) =

=29(-Vy&,Y)=29(FX = X +1(X),Y) =
=2g(FX,Y)=2g9(X,Y)+2p(X)n(Y)é, VX,Y eI'(D).

The assertion (a) follows from (35), (36) and assertion (b) follows from (35)-(37).
Using (10) and (7) we obtain

9(IX.UL&)=9(V,U,&) - g(Vy X, &) =

= g(—?xf,U) - g(§x§’u)
=29(FX - X,U) =2g(FX,U)-2g(X,U) +21(X)g(&,U) VX eI'(D)
Taking into account that

g(FX,N) =g(FfX, fN) = g(FfX,U), VX eI(D). (39)

The assertion | follows from (37) and (38).
Theorem 4. Let M be a hypersurface of a semi symmetric metric connection in a

quasi-Sasakian manifold M . Then we have
(@) the distribution D is integrable and its leaves are totally geodesic
immersed in M if and only if

(36)

37)

(38)
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FD 1L D and AX =a(AX)U —n(AX)¢, vV X eI'(D), (40)
(b) the distribution D @{&} is integrable and its leaves are totally geodesic

immersed in M if and only if

AX =a(AX)U, XeI'(D) and FU =0 (41)
the distribution D @ D" is integrable and its leaves are totally geodesic immersed
in M ifandonlyif FX =0 X eI'(D).
Proof. Let M, be a leaf of integrable distribution D and h  the second
fundamental form of immersion M, — M . Then by direct calculation we infer

g(hf(ny)!U) = g(ng,U) =_g(Y1VXU) = _g(Axth)’ (42)
and
g(hy (X,Y),8) = g(ViY, &) = g(FX,Y) =g (X,Y) +n(X)n(Y),
v X,Y eI'(D). (43)
Now suppose Ml* is a totally submanifold of M . Then (4.13) follows from

(42) and (43). Conversely suppose that (40) is true. Then using the assertion (b) in
Theorem 7 it is easy to see that the distribution D is integrable. Next the proof
follows by using (42) and (43). Next, suppose that the distribution D @{&} is

integrable and its leaves are totally geodesic submanifolds of M . Let M, be a
leaf of D @{£} and h, the second fundamental form of immersion M, > M .
By direct calculations, using (10), (11) (b), (21) (b) and (25) (c), we deduce
g(h(X,Y),U)=g(V,Y,U)=—g(AX,tY), VX,Yel(D), (44)
and
g(h(X,8)U) = 9(Vx&,U) = g(-FU +U —7(U)¢, X)
=g(FU,X)-gU,X), VXeI(D) (45)
Then the assertion (b) follows from (4.12), (4.17), (4.18) and the assertion (a)
of Theorem 7. Next let I\Wl a leaf of the integrable distribution D@ D" and ﬁl the
second fundamental form oh the immersion M, — M . By direct calculation we
get
9(h (X,Y),8)=9(FX,Y) = g(X,Y) +n(X)n(Y), (46)
VX e(D),Y e[(D® D).
The assertion | follows from (7) 1, (39) and (46).
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Kvazi-sasakian ¢oxobrazlisinda yarimsimmetrik metrik slagalarin
hipersathlarinin handasasi

Samsur Rohman
XULASO
Mogalode CR - altcoxobrazli anlayisi totbiq edilir vo simmetrik yarimmetrik
alagoloarin hipersothinds miioyyon strukturlarin varligr mosslosi aragdirilir.

Acar sozlar: CR — altgoxobrazli, kvazi-sasakian ¢oxobrazli, yar1 simmetrik metrik
olaqo, paylanmanin inteqrallanmasi gortlori.

I'eomeTpus runepnoBepxHocTeil MOJTyCHMMETPHYECKHUX CBsI3eil Ha
KBa3U-CACAKHAH MHOI000pa3uu

ITamcyp Paxman
PE3IOME

B pab6ote uccienyercs nonsitue CR — nonMHO0Opasiu U CyIIECTBOBAHHE HEKOTOPBIX
CTPYKTYP O THIIEPIIOBEPXHOCTH CHMMETPHYHBIX MOJYMETPHK CBA3CH.

Kawuesbie cioBa: CR- momymHOroo0pasue, KBa3u-cacakuaH MHOTOOOpasue, IMoiry-
CUMMETpHYECKas CBS3b, YCIOBUE HHTETPUPOBAHUS PACIIPEICIICHUS.
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