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1. Introduction
For any integer m>-—p, let X, denote the class of all meromorphic

functions  by:

f(z):z‘p+ianz” (peN=1{,2..}), (1)

which are analyticand  -valent in a punctured unit disk U* = {z z2eC
and 0<|z|<1}=U\{0} For convenience, wewrite 3, ,., =Y.
The class of analytic functions of the form
f(z)=z+>a,2",zeU,
n=2

is denoted by A . The functions of this class is called starlike of order «,0<a <1
if

R zf '(2) .y
f(2)
and called prestarlike of order «,0<a <1 if
Z *
m* f(z) €S (a),

where we denote by S*(«) and R(a) the classes of starlike and prestarlike of

order
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If f and g are analytic functionsin U , we say that f is subordinateto g ,

written  f < g if there exists a Schwarz function , which (by definition) is
analytic in U with w(0)=0 and |w(z)|<1 for all zeU, such that

f(z) = g(w(z)), z € U. Furthermore, if the function g is univalentin U, then
we have the following equivalence (see [2], [5] and [6]):

f(z)<9(z) & f(0)=g(0)and f(U) < g(U).
For functions f(z)eX,, given by (11) and g(z)eX,, given by

g(z)=z"+ > b,z" , the Hadamard product of f(z) and g(z) is given by:

(Fxg)@)=2"+Yab2"=(g* )(2). @

For complex numbers «,,a,,...,a; and S, 5, ..., B, (ﬂj ¢Z, ={0,-1-2,..};
j=12,...,s), the generalized hypergeometric function | F(c;,...,;;

Bi Bsiz) (see, for example, [11]) is given by:

(@), a)y

Pl B Bid) = 3

II1<s+Ls,1eN,=NuU{0};zeU), (3)
where
) :{1 (k=0;d eC’"=C\{0})
“ld(d+1..(d +k-1) (keN:deC).

Using the function Qp,l,s(al""’al;ﬂl""’lBs;Z): Yom > Lpm -
Qp,l,s(al):Qp,l,s(al""’al;ﬂli"'!ﬁs;z):Z_p IFs(alv'"al;ﬁl""’ﬂs;z)

- N (al)n'*' (al )n+
= P P p n’ 4
z +ﬂ;p Boro(B)rio Onen z 4

For feX, . ,Mostafa[8] defined a function Q_,  (a;) by:
-
zP@1-z2)*P

and defined the family of linear operators M ;,I,s () Xpm—> 2pm givenby:

Qp,l,s(al)*QTJ,l,s(al)= (ZEU*;Z>_p)! (5)
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M7 () =95, (@) * F(2)

o B . ; (6)
7P+ Z e for s iBe g 2" (4> —pi; >0).
From equation (6) , it can be easily verify that:
z(M (e +D (@) =M, () T(2) = (en + PIM (e, +1) T (2) (7)
and
z(M ;1 () F(2)) = (A+ pIM (@) f(2) = (A +2p)M 1, () T (2). ®)
For o, =a,a,=1 and p,=cac>0 we have

M7, () f(z)=L;(a,c)f(z) introduced and studied by Aouf et al. [1]. Also we
have
) M. (PP F(@D) =M. (P+L1pip)f(2) = (2);

i) M,.(p,p;p)f(z)= 2pf (z); #'(2).
i) M2, (p+lpp)f(y= 2P D@+ (@),
- p+1

For more specializations of the parameters A,«; (i=12,..1),5,( ]=12,...,5),l

and ,in (6), (see[8]).

Let P be the class of functions h(z) with h(0)=1, Re h(z)>0 which are
convex univalentin U .

For pkeN,a;,f; ¢Z; bereal, g =e*'* | let

£ (a,)(2) =%Z P ML (@)l =27+ feY )
By (7) and (8) f"(a,, 8,)(2) satisfies:

2(f (o +D(2)) = e, 1, (2)(2) = (a, + p) F, (@, +1)(2) (10)
and

2(f/(@)(@) = A+ p) £ (@,)(2) - (A +2p) £,/ (2,)(2). (11)

Definition . For heP , feX, ., f/(a)(@)#0,zeU", S/(a,p,h) is
the class of functions f satisfying:
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MG @) @)
pf,’ ()(2)

and K/ (a,,/B,,h) isthe class of functions f satisfying:

MG (@) @)
PYi (1)(2)

where g/ (e, 5,)(2) #0, is defined asin (9)

To prove our results, we need the following lemmas.
Lemma [3]. Let S,y € C,B #0,h be convex univalent with Re{fh(z)+y}>0

and g be an analytic function such that g(0) = h(0). If

29'(z)
a(z) +m <h(2),

q(z) < h(z).
Lemma [7]. Let h be convex univalent and w be analytic, Rew>0. If the
analytic function q satisfies g(0) =h(0) and

q(z) +w(z)zq'(2) < h(2),

h(z) (12)

h(z), (13)

then

then q(z) < h(z).
Lemma [10]. For a <1, f eR(a) and ¢eS"(a), we have for any analytic
function F in U,

fx(

T20F) Uy e co(F ),
fxp

where co(F(U) is the convex hull of (F ().
2- Main Results
Theorem 1.1f f €S/ (e, /,,h), then

_dfl@)@)
pf’ ()(2)
where f*(e,)(z) is defined asin (9).

Proof. From (9) we have:

h(2), (14)
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fl(e)ed )= ZE”'\/lfns(Ofl)f(eJ+t z)

6;”) = (j+t)p A j+t
ZE I\/lpls(al)f(e ) (15)
=e;”’ f (,)(2)
and
(f2(a)(@) = z el (M7, (@) f (el 7). (16)

By (15) and (16), we have
Lt e)®) 1 kie‘“““ M7, () (el 2)
pf i (a)n) k& pf’ (e)(2) -
1 (M (@) fE D)
k= pf (@,)(2) '
Since f €S/ (a,,p,,h), we have,
el M7, () (el 2)
pf, (ar,)(2)

< h(2),

which leads to (14).
Theorem 2. For ¢, >0,heP with Rh(z)<1+% andfor feS(ay,p,h),

f/(a, +1)(2) 0, wehave, f eS/(a, +1 4,,h).
Proof. Since f €S/ (a,,/3,,h) , then the function
+1)f(z
a(z)=- M5 D1 (2) , (18)
pf’ (o +1)(2)
is analyticand (0)=1. Applying (7) in (18) we have

a(2) £ (e, +1)(2) = —%[%M ors(@) (@)= (p+a)My, (o +1) T (2)]. (19)

Differentiating (19) and using (7) again, we have

2(1} (e, +1(2)) o oizMg (@) @) 2
T I A LA T v a (20)
Taking

) ,
52) = 2(f/ (2, +1)(2)) -

pf’ (e +1)(2)
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we see that ¢(z) isanalytic, ¢(0)=1 and (20) can be written as
a,2(M},. () (2))

L+ p- "(z) =~ - 22
(o + P P4(2))a(2) +29'(2) e 1D (22)
that is
' 2 ’
e @ e @i@) -
o, +p—ps(z) pf () (2)
Since f €S/ (a;,,,h) , (23)implies
29'(2)
q(z) + 7t p- po(2) < h(z). (24)
Combining (10) and (21), we have
_ _ afl (@)@
al + p p¢(2) - pfki (al +l)(Z) . (25)
Differentiating (25) we get
i A '
s 0 di@)@) 5)

a+p-phz) PRl (@)@)
By Theorem 1, we have

A @)

7 h(z),
pfy (2,)(2)
which yields
2¢'(2)
o(2) + ot - po(D) < h(2).

Since R{e, + p—ph(z)}>0, by Lemma 1, we have ¢(z) <h(z), which implies
R{a, + p— pg(z)} >0 . Applying Lemma 2 and from (25) we have q(z) <h(z)

thatis f eS/ (e, +1, f,,h).

Theorem 3. Let a,>0,heP with R{p+a,—ph(2)}>0 and
f e K (o, B,h) with geS/(a,,B,h). Then, feKl(a+1p,h)

provided g, (a,)(z) # 0.

Proof. By Theorem2, g €S/ (a,,,h)= g €S/ (a, +1, B,,h) and by Theorem

1, we have

2(9¢ (e, +1)(2)
pg; (e +1)(2)

y(z)=- <h(2). (27)
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Let

2(M?, (e, +1) (2))

7)=— p,l,s 1 .
= i (e )

Then, from (7) , we have

A(2)9¢ (e, +D(2) = _%[al s (@) (@)= (p+a)My, (e +D(2)]. (29)

Differentiating (29) we have

(28)

az2(M?, (@) f(2))

1 — 2))q(2) + zq'(z) = - 30
(o, + p= Py (®)a(@)+29'(2) 3 (0D (30)
Applying (10) for g, (30) is equivalent to
W 9@ (M}, (@)1 (@) | 1)
a,+p-py(2) pgy (a,)(2)
Since f e K/ (a,p,,h), the above equation leads to
40 +—9@ ), (32)

o, +p—py(z)
We have R{p+a,—pw(z)}>0 because R{p+a, —ph(z)}>0. Applying
Lemma 2, for (2.19) , we have q(z) < h(z).

Theorem 4. Let heP,R{2p+A—-ph(z)}>0 and f eS/"(a,,/,,h) such
that f"(a,)(z)#0. Then f €S/ (as, 3, h).
Proof . Let f eS/™ (e, B,,h),

2M;.. (@) 12)

= @ 39
Applying (8) in (33) we have
921, (@)(@) =~ LA M (@) F(2) + (Zp”)Mp.s( ) f (2)]. (34)
Differentiating (34) and putting
 2fl(@)@)

P @) %)
simple computations leads to

[2+2p- po(2)]a@) + 20(2) = -| PH4 (M”'S(al)f(z))- (36)

p pf (2,)(2)
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Using (11) we have
(2+ p) £ (@)(2)

A+2p—pd(2) = )@ (37)
k 1
So, (36), reduces to
W@ ML) @)

R T R % T RS e
where f e S/ (e, B,,h). Also differentiating (2.24) , we have

o @D (1, ) @) )

A+2p—pd(2) pf (e)(2)

By Theorem 1, we have

A @t) 10

) “o

Combining (39) , (40) and the condition R{1+2p-ph(z)}>0, we have
®(z) < h(z), whichleadsto R{1+2p— pd(z)}>0 and so applying Lemma 2
to (38), we have q(z) < h(z) which complete the proof of Theorem 4.

Theorem 5. Let he? with R{A+2p-ph(2)}>0 and f e K ™ (ay,p,,h)
with g e S/ (a,,B,,h). Then, f e K/ (a,,pB,,h) provided g; (e, )(z) 0.
Proof. By Theorem 4, g € S/" (e, 8,,h) = g €S/ (,, 5,,h) and by Theorem 1,
we have

2(g; () £ ()
Y(z)=- <h(2),
) POy ()(2) )
and letting
2o (@) (@)
7) = — p,I,s \*"1 ,
O gl @)@
we can complete the proof as in Theorem 4.
Next, let
F,, (F@) =22 ettt (u>0), (41)
: 24 do

which by using (6) gives

aM ;1 (@)F,, T2+ 2M L (@)F, T @) = (4= pIM}, (@) (D). @2)
The operator F_  was investigated by many authors (see [12] and [13] ).
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Theorem 6. Let heP with R{u—ph(z)}>0 and f eS/(a,,/.,h), then
F,..(f)eS{(ay, B, h) provided F/(a;)(z)#0, where F/(x,)(z) is defined

as (9).
Proof. From (42) we have
HF (@)@ + 2R (0)(@) = (1= p) £/ () (2). (43)
Let
oM} (@)F, L (F@)
q(Z) - 1
PR (a1)(2)
and
W(z):_w_ (44)
PR (a)(2)
Using (43) in (44), we have
f (@)(2)
—ow(2) = (u— , 45
p—pw(z) =(u—-p) F 7 (@)(2) (45)
Differentiating (45) and using Theorem 1, we obtain
/ A !
w2 A @@) o (46)

H— pwW(2) pfy’ ()(2)
By Lemma 1, (46) implies w(z) < h(z). The remaining part of the proof is similar
to that of Theorem 2, so we omit it.

Remark . For o, =a,a,=1 and p =c,a,c>0 , Theorem 6 corrected Theorem
2.5 for Oana [9].

The proof of the following theorem is similar to that of Theorems 3 and 5, so we omit
it.

Theorem 7. Let heP with R{u—ph(2)}>0 and f eK/(a,,p,,h), with
respect to g eS;(ay,h), then, F, (f)e K/ (ay, B, h)  with respect to
G=F,,(9) provided G (e,)(z)#0.

Note that for h(z) =422 -1<B < A<1, we have Rh(z) =4

1+Bz ! 1+B*

Remark . Taking h(z) =1£%, in Theorems 2-7, we get corresponding results for the

classes S/ (a,,,,AB) and K/(ay,p,, A B).
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Theorem 8. |If heP, with R{p+1-a-ph(z)}>0,

f eS¢(a,puh) e, and 2"p(z) e R(a),ax <1, then

frpe S;(alvﬂllh)-

Proof. For f €S/ (e, /,,h), we have

(M}, () (@)
pf’ ()(2)

F(z)=- < h(z). (47)

Let

y(2)=2"" 1 (a,)(2),
then ¢ € A and

’ A !
ZW—(Z): p+l+w< p+1- ph(z). (48)
w(z) f (a)(2)
From the hypotheses of the theorem, we see that
RV ., (49)
w(z)

thatis v € S™( a),a <1.
For p e, itiseasy toget

M7 (@) (F =p)(el 2) = (2""p(2)) =M, () T (€l 2)
and

2" (M7 (@) (F =9)(2) = (2" 9(2) * (27 M, () T (2))".
So, we have

(M, (@) =)
13 P ML (@) (el )

@) * "My, (@) T (D)) (50)
Pz p(2) * (2" £ ()(2))
_2"9(2) * (y (2)F(2))
™)y (2)

Since h is convex, univalent, applying Lemma 3, it follows W¥(z) < h(z), thatis
fxpeS(a,p,h).
Remark 3. Specializing the parameters I,S,ai,ﬂj in the above results, we obtain
results corresponding to the special operators in [8].

Y(z)=-
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MEPOMOP®HBIE IIOJKJIACCHI p -BAJTEHTHBIX ®YHKIIUMA C
YYETOM OIIEPATOPA
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PE3IOME

B 310l cTatke MBI HCCIENyeM HEKOTOPBIE OTHOIIEHUS BKIIOYEHHUS JIBYX HOBBIX
MOJKJIACCOB MEPOMOP(HHO p-BaJICHTHBIX (DYHKIUH, ONPEAEICHHBIX ¢ HOMOIIBIO JIMHEHHOTIO
omeparopa. Mbl Takke H3y4acM HEKOTOPBIE COXPAHSIOIUE HHTErPAIbHBIE CBOMCTBA U
CBOMCTBA CBEPTKH 3TUX KJIACCOB.

KiroueBble cioBa: AHaJIMTUUECKHH, P-BAICHTHBINA, MEpOMOP(EH, JIMHEHHBII
omnepatop, nuddepeHuranbHas HOAYMHEHHOCTh, BKIIOUSHNE OTHOLICHUS.
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