MEROMORPHIC SUBCLASSES OF P-VALENT FUNCTIONS INVOLVING CERTAIN OPERATOR

A. O. Mostafa

Math. Dept., Faculty of Science Mansoura University, Mansoura 35516, Egypt adelaeg254@yahoo.com

Abstract: In this paper we investigate some inclusion relationships of two new subclassses of meromorphically p-valent functions, defined by means of a linear operator. We also study some integral preserving properties and convolution properties of these classes.

Keywords:: Analytic, p-valent, meromorphic, linear operator, differential subordination, inclusion relationships.

AMS Subject Classification: 05C07, 05C35, 05C76, 05C90

1. Introduction

For any integer m > -p, let $\sum_{p,m}$ denote the class of all meromorphic

functions by:

$$f(z) = z^{-p} + \sum_{n=m}^{\infty} a_n z^n$$
 $(p \in \mathbb{N} = \{1, 2, ...\}),$ (1)

which are analytic and -valent in a punctured unit disk $\mathbf{U}^* = \{z : z \in \mathbf{C} \text{ and } 0 < |z| < 1\} = \mathbf{U} \setminus \{0\}$. For convenience, we write $\sum_{p,-p+1} = \sum_p$.

The class of analytic functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, z \in \mathsf{U},$$

is denoted by $\,$ A $\,$. The functions of this class is called starlike of order $\,$ $\alpha,0\leq\alpha<1$ if

$$R\frac{zf'(z)}{f(z)} > \alpha$$

and called prestarlike of order $\alpha, 0 \le \alpha < 1$ if

$$\frac{z}{(1-z)^{2(1-\alpha)}} * f(z) \in S^*(\alpha),$$

where we denote by $S^*(\alpha)$ and $R(\alpha)$ the classes of starlike and prestarlike of order

If f and g are analytic functions in U, we say that f is subordinate to g, written $f \prec g$ if there exists a Schwarz function , which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 for all $z \in U$, such that $f(z) = g(w(z)), z \in U$. Furthermore, if the function g is univalent in U, then we have the following equivalence (see [2], [5] and [6]):

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0) \text{ and } f(\mathsf{U}) \subset g(\mathsf{U}).$$

For functions $f(z) \in \sum_{p,m}$ given by (1.1) and $g(z) \in \sum_{p,m}$ given by $g(z) = z^{-p} + \sum_{n=m}^{\infty} b_n z^n$, the Hadamard product of f(z) and g(z) is given by:

$$(f * g)(z) = z^{-p} + \sum_{n=m}^{\infty} a_n b_n z^n = (g * f)(z).$$
 (2)

For complex numbers $\alpha_1, \alpha_2, ..., \alpha_l$ and $\beta_1, \beta_2, ..., \beta_s$ ($\beta_j \notin Z_0^- = \{0, -1, -2, ...\}$); j = 1, 2, ..., s), the generalized hypergeometric function ${}_{l}F_{s}(\alpha_1, ..., \alpha_l; \beta_1, ..., \beta_s; z)$ (see, for example, [11]) is given by:

$$_{l}F_{s}(\alpha_{1},...,\alpha_{l};\beta_{1},...,\beta_{s};z) = \sum_{n=0}^{\infty} \frac{(\alpha_{1})_{n}...(\alpha_{l})_{n}}{(\beta_{1})_{n}...(\beta_{s})_{n}(1)n} z^{n}$$

$$l(l \le s + 1; s, l \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}; z \in \mathbb{U}),$$
 (3)

where

$$(d)_k = \begin{cases} 1 & (k = 0; d \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}) \\ d(d+1)...(d+k-1) & (k \in \mathbb{N}; d \in \mathbb{C}). \end{cases}$$

Using the function $\Omega_{p,l,s}(\alpha_1,...,\alpha_l;\beta_1,...,\beta_s;z): \sum_{p,m} \to \sum_{p,m} :$

$$\Omega_{p,l,s}(\alpha_1) = \Omega_{p,l,s}(\alpha_1, ..., \alpha_l; \beta_1, ..., \beta_s; z) = z^{-p} {}_{l}F_s(\alpha_1, ..., \alpha_l; \beta_1, ..., \beta_s; z)
= z^{-p} + \sum_{n=1-p}^{\infty} \frac{(\alpha_1)_{n+p} ... (\alpha_l)_{n+p}}{(\beta_1)_{n+p} ... (\beta_s)_{n+p} (1)_{n+p}} z^n,$$
(4)

For $f \in \sum_{p,m}$, Mostafa [8] defined a function $\Omega^*_{p,l,s}(\alpha_1)$ by:

$$\Omega_{p,l,s}(\alpha_1) * \Omega_{p,l,s}^*(\alpha_1) = \frac{1}{z^p (1-z)^{\lambda+p}} \quad (z \in \mathsf{U}^*; \lambda > -p), \tag{5}$$

and defined the family of linear operators $M_{p,l,s}^{\lambda}(\alpha_1): \sum_{p,m} \to \sum_{p,m}$ given by:

$$M_{p,l,s}^{\lambda}(\alpha_{1}) = \Omega_{p,l,s}^{*}(\alpha_{1}) * f(z)$$

$$= z^{-p} + \sum_{n=m}^{\infty} \frac{(\beta_{1})_{n+p} ...(\beta_{s})_{n+p} (\lambda+p)_{n+p}}{(\alpha_{1})_{n+p} ...(\alpha_{l})_{n+p}} a_{n} z^{n} (\lambda > -p; \alpha_{i} > 0).$$
(6)

From equation (6), it can be easily verify that:

$$z(M_{p,l,s}^{\lambda}(\alpha_1+1)f(z))' = \alpha_1 M_{p,l,s}^{\lambda}(\alpha_1)f(z) - (\alpha_1+p)M_{p,l,s}^{\lambda}(\alpha_1+1)f(z)$$
 (7)

and

$$z(M_{p,l,s}^{\lambda}(\alpha_1)f(z))' = (\lambda + p)M_{p,l,s}^{\lambda+1}(\alpha_1)f(z) - (\lambda + 2p)M_{p,l,s}^{\lambda}(\alpha_1)f(z).$$
 (8)

For $\alpha_1=a,\alpha_2=1$ and $\beta_1=c,a,c>0$ we have $M_{p,2,1}^{\lambda}(\alpha_1)f(z)=L_p^{\lambda}(a,c)f(z)$ introduced and studied by Aouf et al. [1]. Also we have

i)
$$M_{p,2,1}^{0}(p,p;p)f(z) = M_{p,2,1}^{1}(p+1,p;p)f(z) = f(z);$$

ii)
$$M_{p,2,1}^1(p,p;p)f(z) = \frac{2pf(z) + zf'(z)}{p};$$

iii)
$$M_{p,2,1}^2(p+1,p;p)f(z) = \frac{(2p+1)f(z) + zf'(z)}{p+1};$$

For more specializations of the parameters λ, α_i $(i = 1, 2, ..., l), \beta_j$ (j = 1, 2, ..., s), l and β , in (6), (see [8]).

Let P be the class of functions h(z) with h(0) = 1, Re h(z) > 0 which are convex univalent in U.

For $p, k \in \mathbb{N}, \alpha_i, \beta_i \notin \mathbb{Z}_0^-$ be real, $\in_k = e^{2\pi/k}$, let

$$f_k^{\lambda}(\alpha_1)(z) = \frac{1}{k} \sum_{i=0}^{k-1} \epsilon_k^{ip} M_{p,l,s}^{\lambda}(\alpha_1) f(\epsilon_k^j z) = z^{-p} + ..., f \in \sum_{p,m}.$$
 (9)

By (7) and (8) $f_k^{\lambda}(\alpha_1, \beta_1)(z)$ satisfies:

$$z(f_k^{\lambda}(\alpha_1 + 1)(z))' = \alpha_1 f_k^{\lambda}(\alpha_1)(z) - (\alpha_1 + p) f_k^{\lambda}(\alpha_1 + 1)(z)$$
(10)

and

$$z(f_k^{\lambda}(\alpha_1)(z))' = (\lambda + p)f_k^{\lambda + 1}(\alpha_1)(z) - (\lambda + 2p)f_k^{\lambda}(\alpha_1)(z). \tag{11}$$

Definition. For $h \in P$, $f \in \sum_{p,m}$, $f_k^{\lambda}(\alpha_1)(z) \neq 0$, $z \in U^*$, $S_k^{\lambda}(\alpha_1, \beta_1, h)$ is the class of functions f satisfying:

$$-\frac{z(M_{p,l,s}^{\lambda}(\alpha_1)f(z))'}{pf_k^{\lambda}(\alpha_1)(z)} \prec h(z)$$
(12)

and $K_k^{\lambda}(\alpha_1, \beta_1, h)$ is the class of functions f satisfying:

$$-\frac{z(M_{p,l,s}^{\lambda}(\alpha_1)f(z))'}{pg_{\nu}^{\lambda}(\alpha_1)(z)} \prec h(z), \tag{13}$$

where $g_k^{\lambda}(\alpha_1, \beta_1)(z) \neq 0$, is defined as in (9)

To prove our results, we need the following lemmas.

Lemma [3]. Let $\beta, \gamma \in \mathbb{C}$, $\beta \neq 0$, h be convex univalent with $\text{Re}\{\beta h(z) + \gamma\} > 0$ and q be an analytic function such that q(0) = h(0). If

$$q(z) + \frac{zq'(z)}{\beta q(z) + \gamma} \prec h(z),$$

then

$$q(z) \prec h(z)$$
.

Lemma [7]. Let h be convex univalent and w be analytic, $\operatorname{Re} w \ge 0$. If the analytic function q satisfies q(0) = h(0) and

$$q(z) + w(z)zq'(z) \prec h(z),$$

then $q(z) \prec h(z)$.

Lemma [10]. For $\alpha < 1$, $f \in R(\alpha)$ and $\varphi \in S^*(\alpha)$, we have for any analytic function F in U,

$$\frac{f * (\varphi F)}{f * \varphi}(\mathsf{U}) \subset \overline{co}(F(\mathsf{U}),$$

where co(F(U)) is the convex hull of (F(U)).

2- Main Results

Theorem 1. If $f \in S_k^{\lambda}(\alpha_1, \beta_1, h)$, then

$$-\frac{z(f_k^{\lambda}(\alpha_1)(z))}{pf_k^{\lambda}(\alpha_1)(z)} \prec h(z), \tag{14}$$

where $f_k^{\lambda}(\alpha_1)(z)$ is defined as in (9).

Proof. From (9) we have:

$$f_{k}^{\lambda}(\alpha_{1})(\in _{k}^{j} z) = \frac{1}{k} \sum_{t=0}^{k-1} \in _{k}^{jt} M_{p,l,s}^{\lambda}(\alpha_{1}) f(\in _{k}^{j+t} z)$$

$$= \frac{\in _{k}^{-jp}}{k} \sum_{t=0}^{k-1} \in _{k}^{(j+t)p} M_{p,l,s}^{\lambda}(\alpha_{1}) f(\in _{k}^{j+t} z)$$

$$= \in _{k}^{-jp} f_{k}^{\lambda}(\alpha_{1})(z)$$
(15)

and

$$\left(f_{k}^{\lambda}(\alpha_{1})(z)\right) = \frac{1}{k} \sum_{j=0}^{k-1} \in_{k}^{j(p+1)} \left(M_{p,l,s}^{\lambda}(\alpha_{1})f(\in_{k}^{j+t}z)\right). \tag{16}$$

By (15) and (16), we have

$$-\frac{z\left(f_{k}^{\lambda}(\alpha_{1})(z)\right)'}{pf_{k}^{\lambda}(\alpha_{1})(z)} = -\frac{1}{k} \sum_{j=0}^{k-1} \frac{\epsilon_{k}^{j(p+1)} \left(M_{p,l,s}^{\lambda}(\alpha_{1})f(\epsilon_{k}^{j}z)\right)'}{pf_{k}^{\lambda}(\alpha_{1})(z)}$$

$$= -\frac{1}{k} \sum_{j=0}^{k-1} \frac{\epsilon_{k}^{j} \left(M_{p,l,s}^{\lambda}(\alpha_{1})f(\epsilon_{k}^{j}z)\right)'}{pf_{k}^{\lambda}(\alpha_{1})(z)}.$$

$$(17)$$

Since $f \in S_k^{\lambda}(\alpha_1, \beta_1, h)$, we have,

$$-\frac{\in_k^j \left(M_{p,l,s}^{\lambda}(\alpha_1) f(\in_k^j z)\right)'}{p f_k^{\lambda}(\alpha_1)(z)} \prec h(z),$$

which leads to (14).

Theorem 2. For $\alpha_1 > 0, h \in P$ with $Rh(z) < 1 + \frac{\alpha_1}{p}$ and for $f \in S_k^{\lambda}(\alpha_1, \beta_1, h)$, $f_k^{\lambda}(\alpha_1 + 1)(z) \neq 0$, we have, $f \in S_k^{\lambda}(\alpha_1 + 1, \beta_1, h)$.

Proof. Since $f \in S_k^{\lambda}(\alpha_1, \beta_1, h)$, then the function

$$q(z) = -\frac{z\left(M_{p,l,s}^{\lambda}(\alpha_1 + 1)f(z)\right)}{pf_{\nu}^{\lambda}(\alpha_1 + 1)(z)},$$
(18)

is analytic and q(0) = 1. Applying (7) in (18) we have

$$q(z)f_k^{\lambda}(\alpha_1+1)(z) = -\frac{1}{p} [\alpha_1 M_{p,l,s}^{\lambda}(\alpha_1)f(z) - (p+\alpha_1) M_{p,l,s}^{\lambda}(\alpha_1+1)f(z)]. \tag{19}$$

Differentiating (19) and using (7) again, we have

$$\left(\alpha_1 + p + \frac{z\left(f_k^{\lambda}(\alpha_1 + 1)(z)\right)'}{f_k^{\lambda}(\alpha_1 + 1)(z)}\right)q(z) + zq'(z) = -\frac{\alpha_1 z\left(M_{p,l,s}^{\lambda}(\alpha_1)f(z)\right)'}{pf_k^{\lambda}(\alpha_1 + 1)(z)}.$$
(20)

Taking

$$\phi(z) = -\frac{z(f_k^{\lambda}(\alpha_1 + 1)(z))'}{pf_k^{\lambda}(\alpha_1 + 1)(z)},\tag{21}$$

we see that $\phi(z)$ is analytic, $\phi(0) = 1$ and (20) can be written as

$$\left(\alpha_1 + p - p\phi(z)\right)q(z) + zq'(z) = -\frac{\alpha_1 z \left(M_{p,l,s}^{\lambda}(\alpha_1)f(z)\right)'}{pf_k^{\lambda}(\alpha_1 + 1)(z)},$$
(22)

that is

$$q(z) + \frac{zq'(z)}{\alpha_1 + p - p\phi(z)} = -\frac{\alpha_1 z \left(M_{p,l,s}^{\lambda}(\alpha_1) f(z)\right)'}{p f_k^{\lambda}(\alpha_1)(z)}.$$
(23)

Since $f \in S_k^{\lambda}(\alpha_1, \beta_1, h)$, (23) implies

$$q(z) + \frac{zq'(z)}{\alpha_1 + p - p\phi(z)} < h(z). \tag{24}$$

Combining (10) and (21), we have

$$\alpha_1 + p - p\phi(z) = \frac{\alpha_1 f_k^{\lambda}(\alpha_1)(z)}{p f_k^{\lambda}(\alpha_1 + 1)(z)}.$$
(25)

Differentiating (25) we get

$$\phi(z) + \frac{z\phi'(z)}{\alpha_1 + p - p\phi(z)} = -\frac{z(f_k^{\lambda}(\alpha_1)(z))'}{pf_k^{\lambda}(\alpha_1)(z)}.$$
(26)

By Theorem 1, we have

$$-\frac{z(f_k^{\lambda}(\alpha_1)(z))'}{pf_k^{\lambda}(\alpha_1)(z)} \prec h(z),$$

which yields

$$\phi(z) + \frac{z\phi'(z)}{\alpha_1 + p - p\phi(z)} \prec h(z).$$

Since $R\{\alpha_1 + p - ph(z)\} > 0$, by Lemma 1, we have $\phi(z) \prec h(z)$, which implies $R\{\alpha_1 + p - p\phi(z)\} > 0$. Applying Lemma 2 and from (25) we have $q(z) \prec h(z)$ that is $f \in S_k^{\lambda}(\alpha_1 + 1, \beta_1, h)$.

Theorem 3. Let $\alpha_1 > 0, h \in P$ with $R\{p + \alpha_1 - ph(z)\} > 0$ and $f \in K_k^{\lambda}(\alpha_1, \beta_1, h)$ with $g \in S_k^{\lambda}(\alpha_1, \beta_1, h)$. Then, $f \in K_k^{\lambda}(\alpha_1 + 1, \beta_1, h)$ provided $g_k^{\lambda}(\alpha_1)(z) \neq 0$.

Proof. By Theorem 2, $g \in S_k^{\lambda}(\alpha_1, \beta_1, h) \Rightarrow g \in S_k^{\lambda}(\alpha_1 + 1, \beta_1, h)$ and by Theorem 1, we have

$$\psi(z) = -\frac{z(g_k^{\lambda}(\alpha_1 + 1)(z))}{pg_k^{\lambda}(\alpha_1 + 1)(z)} \prec h(z).$$
(27)

Let

$$q(z) = -\frac{z\left(M_{p,l,s}^{\lambda}(\alpha_1 + 1)f(z)\right)'}{pg_k^{\lambda}(\alpha_1 + 1)(z)}.$$
(28)

Then, from (7), we have

$$q(z)g_{k}^{\lambda}(\alpha_{1}+1)(z) = -\frac{1}{p}\left[\alpha_{1}M_{p,l,s}^{\lambda}(\alpha_{1})f(z) - (p+\alpha_{1})M_{p,l,s}^{\lambda}(\alpha_{1}+1)f(z)\right].$$
(29)

Differentiating (29) we have

$$\left(\alpha_{1} + p - p\psi(z)\right)q(z) + zq'(z) = -\frac{\alpha_{1}z\left(M_{p,l,s}^{\lambda}(\alpha_{1})f(z)\right)'}{pg_{k}^{\lambda}(\alpha_{1} + 1)(z)}.$$
(30)

Applying (10) for g, (30) is equivalent to

$$q(z) + \frac{zq'(z)}{\alpha_1 + p - p\psi(z)} = -\frac{z\left(M_{p,l,s}^{\lambda}(\alpha_1)f(z)\right)'}{pg_{k}^{\lambda}(\alpha_1)(z)}.$$
(31)

Since $f \in K_k^{\lambda}(\alpha_1, \beta_1, h)$, the above equation leads to

$$q(z) + \frac{zq'(z)}{\alpha_1 + p - p\psi(z)} < h(z). \tag{32}$$

We have $R\{p + \alpha_1 - p\psi(z)\} > 0$ because $R\{p + \alpha_1 - ph(z)\} > 0$. Applying Lemma 2, for (2.19), we have $q(z) \prec h(z)$.

Theorem 4. Let $h \in P, R\{2p + \lambda - ph(z)\} > 0$ and $f \in S_k^{\lambda+1}(\alpha_1, \beta_1, h)$ such that $f_k^{\lambda+1}(\alpha_1)(z) \neq 0$. Then $f \in S_k^{\lambda}(\alpha_1, \beta_1, h)$.

Proof. Let $f \in S_k^{\lambda+1}(\alpha_1, \beta_1, h)$,

$$q(z) = -\frac{z\left(M_{p,l,s}^{\lambda}(\alpha_1)f(z)\right)'}{pf_k^{\lambda}(\alpha_1)(z)}.$$
(33)

Applying (8) in (33) we have

$$q(z)f_{k}^{\lambda}(\alpha_{1})(z) = -\frac{p+\lambda}{p} [M_{p,l,s}^{\lambda+1}(\alpha_{1})f(z) + (\frac{2p+\lambda}{p})M_{p,l,s}^{\lambda}(\alpha_{1})f(z)]. \tag{34}$$

Differentiating (34) and putting

$$\Phi(z) = -\frac{z(f_k^{\lambda}(\alpha_1)(z))'}{pf_k^{\lambda}(\alpha_1)(z)},\tag{35}$$

simple computations leads to

$$\left[\lambda + 2p - p\Phi(z)\right]q(z) + zq'(z) = -\left(\frac{p+\lambda}{p}\right) \frac{z\left(M_{p,l,s}^{\lambda+1}(\alpha_1)f(z)\right)'}{pf_k^{\lambda}(\alpha_1)(z)}.$$
 (36)

Using (11) we have

$$\lambda + 2p - p\Phi(z) = \frac{(\lambda + p)f_k^{\lambda + 1}(\alpha_1)(z)}{f_k^{\lambda}(\alpha_1)(z)}.$$
(37)

So, (36), reduces to

$$q(z) + \frac{zq'(z)}{\lambda + 2p - p\Phi(z)} = -\frac{z\left(M_{p,l,s}^{\lambda+1}(\alpha_1)f(z)\right)'}{pf_k^{\lambda+1}(\alpha_1)(z)} \prec h(z), \tag{38}$$

where $f \in S_k^{\lambda+1}(\alpha_1, \beta_1, h)$. Also differentiating (2.24), we have

$$\Phi(z) + \frac{z\Phi'(z)}{\lambda + 2p - p\Phi(z)} = -\frac{z\left(f_k^{\lambda+1}(\alpha_1)f(z)\right)'}{pf_k^{\lambda+1}(\alpha_1)(z)}.$$
(39)

By Theorem 1, we have

$$-\frac{z\left(f_k^{\lambda+1}(\alpha_1)f(z)\right)'}{pf_k^{\lambda+1}(\alpha_1)(z)} \prec h(z). \tag{40}$$

Combining (39), (40) and the condition $R\{\lambda + 2p - ph(z)\} > 0$, we have $\Phi(z) \prec h(z)$, which leads to $R\{\lambda + 2p - p\Phi(z)\} > 0$ and so applying Lemma 2 to (38), we have $q(z) \prec h(z)$ which complete the proof of Theorem 4.

Theorem 5. Let $h \in \mathbb{P}$ with $R\{\lambda + 2p - ph(z)\} > 0$ and $f \in K_k^{\lambda+1}(\alpha_1, \beta_1, h)$ with $g \in S_k^{\lambda+1}(\alpha_1, \beta_1, h)$. Then, $f \in K_k^{\lambda}(\alpha_1, \beta_1, h)$ provided $g_k^{\lambda}(\alpha_1)(z) \neq 0$.

Proof. By Theorem 4, $g \in S_k^{\lambda+1}(\alpha_1, \beta_1, h) \Rightarrow g \in S_k^{\lambda}(\alpha_1, \beta_1, h)$ and by Theorem 1, we have

$$\Psi(z) = -\frac{z(g_k^{\lambda}(\alpha_1)f(z))'}{pg_k^{\lambda}(\alpha_1)(z)} \prec h(z),$$

and letting

$$q(z) = -\frac{z\left(M_{p,l,s}^{\lambda}(\alpha_1)f(z)\right)'}{pg_{\lambda}^{\lambda}(\alpha_1)(z)},$$

we can complete the proof as in Theorem 4.

Next, let

$$F_{p,\mu}(f(z)) = \frac{\mu - p}{z^{\mu}} \int_0^z t^{\mu - 1} f(t) dt \quad (\mu > 0), \tag{41}$$

which by using (6) gives

$$\mu M_{p,l,s}^{\lambda}(\alpha_1) F_{p,\mu} f(z) + z \left(M_{p,l,s}^{\lambda+1}(\alpha_1) F_{p,\mu} f(z) \right)' = (\mu - p) M_{p,l,s}^{\lambda}(\alpha_1) f(z). \tag{42}$$

The operator $F_{p,\mu}$ was investigated by many authors (see [12] and [13]).

Theorem 6. Let $h \in P$ with $R\{\mu - ph(z)\} > 0$ and $f \in S_k^{\lambda}(\alpha_1, \beta_1, h)$, then $F_{p,\mu}(f) \in S_k^{\lambda}(\alpha_1, \beta_1, h)$ provided $F_k^{\lambda}(\alpha_1)(z) \neq 0$, where $F_k^{\lambda}(\alpha_1)(z)$ is defined as (9).

Proof. From (42) we have

$$\mu F_k^{\lambda}(\alpha_1)(z) + z \left(F_k^{\lambda}(\alpha_1)(z) \right) = (\mu - p) f_k^{\lambda}(\alpha_1)(z). \tag{43}$$

Let

$$q(z) = -\frac{z \left(M_{p,l,s}^{\lambda}(\alpha_1) F_{p,\mu}(f(z))\right)'}{p F_k^{\lambda}(\alpha_1)(z)}$$

and

$$w(z) = -\frac{z(F_k^{\lambda}(\alpha_1)(z))}{pF_k^{\lambda}(\alpha_1)(z)}.$$
(44)

Using (43) in (44), we have

$$\mu - pw(z) = (\mu - p) \frac{f_k^{\lambda}(\alpha_1)(z)}{F_k^{\lambda}(\alpha_1)(z)}.$$
(45)

Differentiating (45) and using Theorem 1, we obtain

$$w(z) + \frac{zw'(z)}{\mu - pw(z)} = -\frac{z(f_k^{\lambda}(\alpha_1)(z))'}{pf_k^{\lambda}(\alpha_1)(z)} \prec h(z). \tag{46}$$

By Lemma 1, (46) implies $w(z) \prec h(z)$. The remaining part of the proof is similar to that of Theorem 2, so we omit it.

Remark . For $\alpha_1=a,\alpha_2=1$ and $\beta_1=c,a,c>0$, Theorem 6 corrected Theorem 2.5 for Oana [9].

The proof of the following theorem is similar to that of Theorems 3 and 5, so we omit it.

Theorem 7. Let $h \in \mathsf{P}$ with $R\{\mu - ph(z)\} > 0$ and $f \in K_k^{\lambda}(\alpha_1, \beta_1, h)$, with respect to $g \in S_k^{\lambda}(\alpha_1, h)$, then, $F_{p,\mu}(f) \in K_k^{\lambda}(\alpha_1, \beta_1, h)$ with respect to $G = F_{p,\mu}(g)$ provided $G_k^{\lambda}(\alpha_1)(z) \neq 0$.

Note that for $h(z) = \frac{1+Az}{1+Bz}$, $-1 \le B < A \le 1$, we have $Rh(z) = \frac{1+A}{1+B}$.

Remark. Taking $h(z) = \frac{1+Az}{1+Bz}$, in Theorems 2-7, we get corresponding results for the classes $S_k^{\lambda}(\alpha_1, \beta_1, A, B)$ and $K_k^{\lambda}(\alpha_1, \beta_1, A, B)$.

Theorem 8. If $h \in P$, with $R\{p+1-\alpha-ph(z)\} > 0$, $f \in S_k^{\lambda}(\alpha_1, \beta_1, h), \varphi \in \sum_{p,m}$ and $z^{p+1}\varphi(z) \in R(\alpha), \alpha < 1$, then $f * \varphi \in S_k^{\lambda}(\alpha_1, \beta_1, h)$.

Proof. For $f \in S_k^{\lambda}(\alpha_1, \beta_1, h)$, we have

$$F(z) = -\frac{z\left(M_{p,l,s}^{\lambda}(\alpha_1)f(z)\right)'}{pf_k^{\lambda}(\alpha_1)(z)} \prec h(z). \tag{47}$$

Let

$$\psi(z) = z^{p+1} f_k^{\lambda}(\alpha_1)(z),$$

then $\varphi \in A$ and

$$\frac{z\psi'(z)}{\psi(z)} = p + 1 + \frac{z(f_k^{\lambda}(\alpha_1)(z))}{f_k^{\lambda}(\alpha_1)(z)} \prec p + 1 - ph(z). \tag{48}$$

From the hypotheses of the theorem, we see that

$$R\frac{z\psi'(z)}{\psi(z)} > \alpha,\tag{49}$$

that is $\psi \in S^*(\alpha), \alpha < 1$.

For $\varphi \in \sum_{p,m}$ it is easy to get

$$z^{p+1}M_{p,l,s}^{\lambda}(\alpha_1)(f*\varphi)(\in_k^j z) = (z^{p+1}\varphi(z))*M_{p,l,s}^{\lambda}(\alpha_1)f(\in_k^j z)$$

and

$$z^{p+2}(M_{p,l,s}^{\lambda}(\alpha_1)(f*\varphi)(z))' = (z^{p+1}\varphi(z))*(z^{p+2}M_{p,l,s}^{\lambda}(\alpha_1)f(z))'.$$

So, we have

$$\Psi(z) = -\frac{(M_{p,l,s}^{\lambda}(\alpha_{1})(f * \varphi)(z))'}{\frac{p}{k} \sum_{j=0}^{k-1} \in_{k}^{jp} M_{p,l,s}^{\lambda}(\alpha_{1})(f * \varphi)(\epsilon_{k}^{j} z)}$$

$$= -\frac{(z^{p+1}\varphi(z)) * z^{p+2} (M_{p,l,s}^{\lambda}(\alpha_{1})f(z))'}{pz^{p+1}\varphi(z) * (z^{p+1}f_{k}^{\lambda}(\alpha_{1})(z))}$$

$$= \frac{z^{p+1}\varphi(z) * (\psi(z)F(z))}{z^{p+1}\varphi(z) * \psi(z)}.$$
(50)

Since h is convex, univalent, applying Lemma 3, it follows $\Psi(z) \prec h(z)$, that is $f * \varphi \in S_k^{\lambda}(\alpha_1, \beta_1, h)$.

Remark 3. Specializing the parameters l, s, α_i, β_j in the above results, we obtain results corresponding to the special operators in [8].

Conflicts of Interest. The authors declare that they have no conflicts of interest regarding the publication of this paper.

References

- 1. Aouf M.K., Shamandy A., Mostafa A.O. and El-Emam F.Z., Argument estimates of certain meromorphically p-valent functions associated with family of linear operator, Math. Slovaca, V. 61, 2011, no. 6, pp. 907-920.
- 2. Bulboaca T., Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
- 3. Eenigenberg P., Miller S. S., Mocanu P. T. and M. O. Reade, On Briot-Bouquet differential subordination, Gen. Inequal., V. 3,1983, pp. 339-348.
- 4. Kumar V. and Shukla S. L., Certain integrals for classes of p-valent meromorphic functions, Bull. Aust. Math. Soc., V. 25, 1982, pp. 85-97.
- 5. Miller S. S. and Mocanu P. T., Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
- 6. Miller S. S. and P. T. Mocanu P. T., Differential subordinations and univalent functions, Michigan Math. J., V. 28, 1981, no. 2, pp. 157-171.
- 7. Miller S. S. and Mocanu P. T., Differential subordinations and inequalities in the complex plane, J. Differential Equations, V. 67, 1987, pp.199-211.
- 8. Mostafa A. O., Applications of differential subordination to certain subclasses of p-valent meromorphic functions involving a certain operator, Math. Comput. Modelling, V. 54, 2011, pp.1486--1498.
- 9. Oana C., Subclasses of meromorphically p-valent functions a certain linear operator, Math. Slovaca, V. 66, 2016, no. 3, pp. 605-614.
- 10. Ruscheweyh St., Convolutions in Geometric Function Theory, Se'minaire de Mathe'matiques Supe'rieures, vol. 83, Les Presses de l'Universite' de Montre'al, Montreal, Quebec, 1982.
- 11. Whittaker E.T. and Watson G.N., A Course on Modern Analysis: An introduction to The General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Fourth edition (reprinted), Cambridge University Press, Cambridge, 1927.
- 12. Uralegaddi B. A. and Somanatha C., Certain classes of meromorphic multivalent functions, Tamkang J. Math., V. 23,1992, pp. 223--231.
- 13. Yang D. -G., Certain convolution operators for meromorphic functions, South. Asian Bull. Math., V. 25, 2001,pp. 175-186

МЕРОМОРФНЫЕ ПОДКЛАССЫ р -ВАЛЕНТНЫХ ФУНКЦИЙ С УЧЕТОМ ОПЕРАТОРА

А.О. Мостафа

PROCEEDINGS OF IAM, V.7, N.2, 2018

Кафедра математики, факультет естественных наук Мансуре Университета, Египет adelaeg254@yahoo.com

РЕЗЮМЕ

В этой статье мы исследуем некоторые отношения включения двух новых подклассов мероморфно р-валентных функций, определенных с помощью линейного оператора. Мы также изучаем некоторые сохраняющие интегральные свойства и свойства свертки этих классов.

Ключевые слова: Аналитический, р-валентный, мероморфен, линейный оператор, дифференциальная подчиненность, включение отношения.