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Abstract. The steady two-dimensional boundary layer flow of nanofluid past a static wedge
is numerically investigated. Two metamodels based on the evolved group method of data
handling (GMDH) type neural networks are then obtained for modeling of both pressure
drop parameter (PDP) and heat transfer parameter (HTP) with respect to design variables of
volume fraction and Falkner-Skan power law parameter in considered problem. Resultant
polynomial neural networks are deployed to find a set of optimal solutions, well known as
Pareto optimal solutions, using multi-objective genetic algorithms (GAs) (non-dominated
sorting genetic algorithm, NSGAII). It is shown that some useful and important information
involved in the performance of Falkner-Skan wedge flow can be discovered by Pareto
based multi-objective optimization.
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1. Introduction

Increasing demand of cooling rate enhancement in high performance
integrated electronic systems with exceedingly small dimensions was brought into
happen using new class of fluids termed as the nanofluids. Dispersing nanoparticles
with higher magnitude of thermal conductivity than the base fluid in liquids like
water, ethylene glycol (EG), oils, etc. result in significantly increased cooling
performance [1]. Due to enormous amount of heat generated by recent electronics,
finding an efficient cooling system is one of the most important problems in
designing electronic components. There are several studies for convective heat
transfer in the literature. Effect of different particle volume percentages and
different Reynolds number on the heat transfer coefficient of deionized water with
a dispersion of Cu particles with below 100nm diameter as sample nanofluid were
considered in some studies [2-4]. They showed an increasing Nusselt number with
increasing volume loading of Cu-water nanofluids and Reynolds number.
According to Lai et al. [5], the heat transfer coefficient depends on the nanofluid
volume fraction, Reynolds number, the base fluid thermal properties, temperature
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and the nanoparticle purity. Considerable amount of studies were carried out
regarding thermal conductivity of nanofluids [6-8]. Wang et al. [9] considered
alumina and cupric oxide with a variety of base-fluid and showed enhanced
thermal conductivity. A maximum of 12% increase in the thermal conductivity is
noted with alumina particles of a volume fraction of 3%. However, the viscosity on
the other hand showed an increase of 20-30% for the same volume fraction.
Eastman et al. [10], reported 40% enhancement in thermal conductivity of 0.3%
copper nanoparticles of ethylene glycol nanofluids compared to base fluid.

Finding optimal values of volume fraction and Falkner-Skan power law
parameter is, indeed, a multi-objective optimization problem. Both the skin friction
coefficient and the local Nusselt number of the flow and heat transfer are important
objective functions to be optimized simultaneously in such a real world complex
multi-objective optimization problem. These objective functions are figured out
from experiment or using time consuming process of computer fluid dynamic
(CFD) approaches, which cannot be used in an iterative optimization task unless a
simple but effective metamodel is constructed over the numerical or experimental
data.

System identification techniques are applied in many fields to model and
predict the behaviors of unknown and/or very complex systems based on given
input—output data [11]. Soft computing methods [12] are considered strictly in
solving complex non-linear system identification and control problems. Many
studies have been carried out to use evolutionary methods as effective tools for
system identification [13-15]. Among these methodologies, the group method of
data handling (GMDH) algorithm is a self-organizing approach by which gradually
more complicated models are generated based on the evaluation of their
performances on a set of multi-input, single output data pairs (x;, y;) (i = 1,2,...,M) .

The GMDH was first developed by Ivakhnenko [16] as a multivariate analysis
method for complex systems modeling and identification. In this way, the GMDH
was used to circumvent the difficulty of having a priori knowledge of mathematical
model of the process being considered.

Genetic algorithms have been used in a feed forward GMDH type neural
network for each neuron searching its optimal set of connection with the preceding
layer [17,18]. In the former reference, the authors have proposed a hybrid genetic
algorithm for a simplified GMDH type neural network in which the connection of
neurons are restricted to adjacent layers. Such shortcoming has been recently
removed by the work of some authors [19,20].

Optimization in engineering design has always been of great importance
and interest particularly in solving complex real-world design problems. Basically,
the optimization process is defined as finding a set of values for a vector of design
variables so that it leads to an optimum value of an objective or cost function.
There are many calculus-based methods including gradient approaches to find
mostly local optimum solutions and these are comprehensively explored in [21].
Strong dependence of gradient methods on the initial guess can cause gradient
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based methods to find a local optimum rather than a global one. This difficulty has
led to extensive use of heuristic optimization methods, particularly genetic
algorithms (GAs). When there are several objectives of cost functions that should
be optimized simultaneously, the problem is considered as multi-objective
optimization problem. Therefore, there is no single optimal solution that is best
with respect to all the objective functions. Instead, there is a set of optimal
solutions, well known as Pareto optimal solutions [22], which distinguish
significantly the inherent natures between single-objective and multi-objective
optimization problems. The concept of a Pareto front in the space of objective
functions in multi-objective optimization problems stand for a set of solutions that
are non-dominated to each other but are superior to the rest of solutions in the
search space. Both the NSGA and MOGA are Pareto based approaches which use
the non-dominated sorting procedure originally proposed by Goldberg [23]. The
lack of elitism in these algorithms was a motivation for modification of that
algorithm to NSGA-II [24] in which a direct elitist mechanism has been introduced
to enhance the population diversity.

In the present paper, effect of volume fraction and Falkner-Skan power law
parameter are considered on skin friction coefficient and the local Nusselt number.
An optimized GMDH type neural network are trained to best prediction of
objectives for different designing parameters values. Obtained polynomial models
are used to find pareto front of the best possible combinations of maximum Nusselt
number and minimum skin friction coefficient. The corresponding variations of
design variables, Nusselt number and skin friction coefficient, known as the Pareto
set, constitute some important design choices that can be effectively used for
optimal heat transfer with lower pressure drop in electronic device cooling systems
using nanofluids.

In this study, numerical solution of Navier-Stokes and energy equations
were obtained using MATLAB bvp4c and RK4 and validated using data reported
by Yacob et al. [25]. Then, GS-GMDH type neural network are used to obtain
polynomial models for simulating of HTP and PDP with values of m and ¢. The

obtained simple polynomial models are then used in a Pareto based multi-objective
optimization approach to find the best possible combinations of HTP and PDP,
known as the Pareto front.

2. Problem formulation

Consider the problem of steady two-dimensional boundary layer flow with
water-based nanofluids containing Cu as nanoparticles past a wedge as depicted in
Figure 1. No slip condition is taken into account and nanofluid is assumed to be
incompressible along with laminar flow. Applying the boundary layer
approximations and using the nanofluid model proposed by Tiwari and Das [26],
the conservation of mass, momentum, and energy equations for a nanofluid are
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v (1)
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with the boundary conditions

v=0,u=0 aty=0, “4)
u=u,(x) asy-—>oo,
T'=T, aty=0, ®)

T=T, asy-—>oo.
Here u and v are the velocity components along the x and y direction, respectively,
My and p,, are the viscosity of the nanofluid and the density of the nanofluid
respectively, and a,,is the thermal diffusivity of the nanofluid which are given by
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where pyis the density of the base fluid, p; is the density of the solid particle, s is
the viscosity of the base fluid and ¢ is the solid volume fraction of the nanofluid. &,/
is the effective thermal conductivity of the nanofluid, which are approximated by
the Maxwelle-Garnetts model (Oztop and Abu-Nada [27]).

For a main stream with velocity u, varying as x”, u.(x)=U.x" where U,
and m are constants with 0<m<1, the transformations

_ {2foue (JC)T/2 f(77)a n= l:(m + l)ue (x)]/2 N )
m+1 Zfo
on)=(T -1, )/(Ty - T..) (10)
reduce the governing equations to [25]
= 1 f"’+ﬂ"+ﬂ(l—f'2)=0, (11)
(1-9)*(1-p+92)
kyy (12)
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subject to the boundary conditions

(13)
0(0)=1, 6(x)=0, (14)

where primes denote differentiation with respect to 7, Pr=v /«a ; Is the Prandtl
number and the parameter S is the Hartree pressure gradient parameter which

corresponds to S = €2/ for a total angle €2 of the wedge defined as
2m (15)

m+1
The thermophysical properties of the fluid and nanoparticles are given in Table 1
(see Oztop and Abu-Nada [27]).
The skin friction coefficient Cris defined as

c, = Ty . (16)
PrU,
with 7y as the surface shear stress which is given by
Tw = My (5_14} ’ n
7 oy o
Substituting Eq. (9) into Egs. (16) and (17) we obtain
PDP=[2Re /(m+1)]°C, = Wf”(o), (18)

where Re, = u.x / v;is the local Reynolds number and PDP stands for pressure drop
parameter that shows pressure drop over a wedge in Falkner-Skan flow

quantitatively.
The local Nusselt number Nu, is defined as
Nu, = _ Mw (19)
kf (TW - Too )
in which g, is the surface heat flux which is designed as
oT (20)
D =~ 5]
Y Jyo

Using Egs. (9), (19) and (20), we have
k 1)
HTP =[(m+1)Re /2] Nu, = —k—fe'(o).
f

Here HTP stands for heat transfer parameter that shows heat transfer over a
wedge in Falkner-Skan flow.

For the simulation of nanofluid flow field, Egs. (11) and (12) along with
boundary conditions (13) and (14) are solved numerically using two methods of
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MATLAB bvp4c function and RK4. Further, numerical results are compared with
those reported in the literature [25]. The numerical values of PDP and HTP for
different values of m and ¢ are presented in Tables 2 and 3, respectively.

3. Modeling using GMDH type neural networks

Neural networks are composed of a number of components, named neuron, which
are inspired by nature. These neurons construct different hidden layers in a neural
network and connections between components make the network function. In
GMDH type neural network, different pairs of neurons are connected together
using a quadratic polynomial and make a neuron in next hidden layer. Such neural
networks are adjusted so that a particular input leads to a specific target output.
General function defining output with respect to input variables in a GMDH type
neural network has the form of volterra functional series which is known as the
Kolmogorov—Gabor polynomial [28,29] as in

n n n n n n
RSN ARSI NI EIEDIPIPINE LI
1 1 1 1 1 1

Eq. (22) can be constructed using different quadratic polynomials in the form of

(22)

y= G(xi,x‘/)z ag+a;x; +ayx; +a;x;x; + a,x; + asx_f (23)
which is consisted of two neurons to make a neuron in next hidden layer.
Coefficients a; in Eq. (23) should be calculated to perform minimum

difference between neural network approximated value of output, y , and its actual
value, y, for each pair of (x; x;) as the input variables. These coefficients are

calculated using regression technique in a way that minimum difference between
¥ and y is obtained for all M of input-output data in a least square sense, that is

> =5 ) (&9

EFE==—=— > min.
M

Singular value decomposition (SVD) is a popular technique to solve least
square problems in existence of some singularities in the normal equations [20].
Using proposed technique in ref. [30, 31], the optimum values of a, are calculated.

According to ref. [32], self organizing GMDH type neural network performance is
increased using such a technique of SVD. According to ref. [20], it seems that such
application of SVD may remove the problem of superfluous data reported in ref.
[33].

Genetic algorithm is used to find optimum network architecture between
possible topologies [34]. Chromosomes are represented as proposed in ref. [35] in a
way that neurons in different layers can be connected to neurons in layers far away.
A sample GS-GMDH neural network is depicted in Fig. 2 which unlike the CS-
GMDH neural networks, neurons connections can happen between every different
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layers not necessarily successive ones. In Figure 2, neuron ad in the first hidden
layer is connected to the output layer by directly going through the second hidden
layer. Therefore, it is now very easy to notice that the name of output neuron
(network’s output) includes ad twice as abccadad. In other words, a virtual neuron
named adad has been constructed in the second hidden layer and used with abcc in
the same layer to make the output neuron abccadad as shown in Figure 2.

Crossover and mutation are deployed to evolve generations [23] and
roulette wheel selection approach is used for choosing two parents producing two
offspring and selecting dominant chromosomes to transport to next generation.
Also, elitism is used to bring the best population to next generation.

Crossover operator is depicted for a selected individual in the Figures 3
and 4. It should be noted that crossover location should be chosen randomly from

set of {21,22,23,...,2"’“} where n; is the number of hidden layers of the

chromosome with the smaller length [20]. Mutation operator simply implemented
by changing values of some genes.

4. Methodology for parametric optimization

In a multi-objective optimization problem, multiple objectives are optimized
simultaneously which, there does not necessarily exist a solution that is best with
respect to all objectives. Therefore, there is a set of optimum solutions that may be
best in one objective but worst in another. In general, it can be mathematically

* * * * « 7 . .
defined as Find the vector X = [xl 3 X35 Xg5enns xn] to optimize

FX) =1/, fo (X £ OV (25)
subject to m inequality constraints

[(X)<0, i=1tom (26)
and p equality constraints

h(X)=0, j=1to p, 27)

where X~ € R” is the vector of decision or design variables, and F (X ) eR* is

the vector of objective functions.

In implementing genetic algorithm, each chromosome is represented in
binary string. The genetic operators of crossover and mutation are implemented to
produce two offspring from two parents. The natural roulette wheel selection
method is used for choosing two parents producing two offspring. The crossover
operator for two selected individuals is simply accomplished by exchanging the
tails of two chromosomes from a randomly chosen point. A simple mutation is
performed by inverting the value of each gene with a small probability. Defining
all objective functions in a way to be minimized, such multi-objective
minimization based on the Pareto approach can be conducted using some
definitions [20]:
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4.1. Definition of Pareto dominance.
A vector U =[u,u,,...,u; ] € R* dominates to vectorV=[v,v,,...,v, ] € R*
(denoted by U < V) if and only

Vie {1,2,3,...,k},ui <vAdje {1,2,3,...,k} u, <v; .

It means that there is at least one u; which is smaller than v; whilst the rest u’s are
either smaller or equal to corresponding v’s.

4.2. Definition of Pareto optimality.

A point X~ € Q (Qis a feasible region in R” satisfying Egs. (26) and (27)) is said
to be Pareto optimal (minimal) with respect to allX €2 if and only
if i/ (X ‘*) <F (X ) . Alternatively, it can be readily restated as

Vie{l,23,..k} VXeQ-{X}fi(X)<

<[i(XOAT (1,23, k}: [(XT) < f,(X).
It means that the solution X" is said to be Pareto optimal (minimal) if no other
solution can be found to dominate X" using the definition of Pareto dominance.

4.3. Definition of Pareto set.

For a given multi-objective problem, a Pareto set go* is a set in the decision variable
space consisting of all the Pareto optimal vectors
@ = {X € Q|£ X' e F(X') < F(X)} . In other words, there is no other X' in

Q that dominates any X € Q).

4.4. Definition of Pareto front.

For a given multi-objective problem, the Pareto front o7 "is a set of vectors of
objective functions which are obtained using the vectors of decision variables in
the Pareto set ¢, that is

T ={F(X)=(£(X). £,(X),... £ (X)): X €'}

Therefore, the Pareto front @7 is a set of the vectors of objective functions

mapped from o .

5. Modeling of HTP and PDP using GMDH-type neural network
HTP and PDP are considered as outputs which are dependent on input

variables of are Falkner-Skan power law parameter and volume fraction of
nanoparticle. Due to simultaneous solution of Eqs. (11) and (12) to find HTP and
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PDP, equal number of input-output data pairs are considered to train GMDH-type
neural network for both outputs. In order to demonstrate the prediction ability of
the evolved GMDH type neural networks, the data in both input—output data have
been divided into two different sets, namely, training and testing sets.

The training set consists of 80 out of the 100 input—output data pairs for
HTP and alike for PDP which is used for training the neural network models using
the method presented in Section 5. Remained 20 input-output data are then
evaluated using trained GMDH-type neural network to convince ability to predict
outputs. Genetic algorithm is used to find optimum network architecture to best
training set data prediction. A population of 40 individuals with a crossover
probability (P.) of 0.7 and mutation probability (P,) 0.08 has been used in 300
generations for both outputs. The corresponding polynomial representation for
HTP is as follows:

Vv = 0.9139 + 2.5444 ¢ + 0.4808 m — 0.492 ¢* — (28)
—-0.2819m? +0.3014 ¢ m.

Vimaws =—1.4064 —7.2316 ¢ +3.7282 y 1, — (29)
93178 > =1.3179 y 01" + 70016 ¥ 1101

Vimans =0.9139 +2.5444 ¢ + 0.4808 m — 0.492 > — (30)
—0.2819m* +0.3014 ¢ m.

Vs =0.0076 +0.9885 v —0.0234 m + (1)
+0.009 y 50, +0.0537 m* —0.0217 y, 501 M-

Vimans =0.0145+0.9677 y,,, v, +0.0225m + (32)
+0.0164 y 5y, +0.004m* —0.0202 y 5y, M.

[(m+1)Re /2] Nu, =0.0021+3.6673 ;311 — (33)

2.6695 1132 — 04981 a0’ +

2
+0.5041 y13v2" —0.0055 ¥ yr3n1 Yirsna-

Similarly, the corresponding polynomial representation of the model for PDP is in
the form of

Vi = 0.4837 +3.0694 ¢ +1.6873 m + (34)
3.7034 ¢> —1.0170 m* +3.5179 m ¢.
Vv, =0.4837 +3.0694 ¢ +1.6873 m + (35)
3.7034 4> —1.0170 m*> +3.5179 m ¢.
Vot =0.0102+0.0825 y,,, v, +0.9479 4 + (36)

0.0906 1,y +0.03914% —0.1228 1,1, &.
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Viran: =—0.0897 +1.2873m —1.9522 13, — 0.1901m* — (37)
77463 ¥ ant” +2.5099 m ¥ o u1-

Vrans =0.0003 +1.0021 y ;50 —0.1057 m +0.0213 y, 01" + (38)
0277 m> —0.1168 y,, ,,, M.

[2Re, /(m + D] C; =—0.0005 —1.7404 y 5, +2.7436 ¥ 50, + (39)

2 2
0.1965 y 1351~ —0.235 ypy3n2" +0.0372 v yany YVisana-

The structures of the evolved three hidden layer GMDH type neural
network for HTP and PDP are shown in the Figures 5 and 6 for HTP and PDP,
respectively. As depicted in the Figures 7 and 8, the evolved GMDH-type neural
network successfully model HTP and PDP, respectively. It is evident that this
metamodel in terms of simple polynomial equations predict the outputs of the
testing data that have not been used during the training process.

Obtained metamodels can now be utilized in a Pareto multi-objective
optimization of the Falkner-Skan wedge flow considering both HTP and PDP as
conflicting objectives.

6. Pareto optimization of Falkner-Skan wedge flow using polynomial neural
network models

In order to investigate the optimal performance of the Falkner-Skan wedge
flow in different values of ¢ and m, the metamodel obtained in the previous section
are now deployed in a multi-objective optimization procedure. Two objective
functions of HTP and PDP corresponding to design parameters of m and ¢ are
easily evaluated using trained polynomial neural network which is obtained in
pervious section. Since both HTP and PDP are maximized due to increasing the
value of m and @, while design goal is maximizing of HTP and decreasing in
amount of PDP, therefore using multi-objective optimization algorithm is
inevitable. Multi-objective optimization process results in non-dominated design
points of input variables which are named pareto set. Non-domination means that
improvement of an objective follow with worse value for other objectives.

Optimization is a time consuming process if objective values
corresponding to input variables takes long to compute. Therefore, deploying a
well trained neural network results in less time of optimization. Due to conflict of
objective functions, it is not possible to find non-dominated pareto front without
using of a multi-objective optimization algorithm.

Modified NSGA-II approach [19,20] are deployed in multi-objective
optimization process where a population size of 60 has been chosen in different
runs with crossover probability P, and mutation probability P, are 0.7 and 0.07,
respectively. The range of variations for ¢ and m are assumed to be 0-0.2 and 0-1,
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respectively. Consequently, a total number of 71 non-dominated optimum design
points have been obtained, as shown in Figure 9 in the plane of the HTP and PDP.
Clearly, there are some important optimal design facts between the two objective
functions that have been discovered by the Pareto optimization of the polynomial
neural network models obtained using the numerical data of the Falkner-Skan
wedge flow. There are three optimum design points, namely, a, b and c, whose
corresponding design variables and objective functions are shown in Table 4.
These points clearly demonstrate tradeoffs in objective functions HTP and PDP
from which an appropriate design can be compromisingly chosen.

It can be readily seen from Figure 10 that for minimum value of m, value
of HTP significantly increases from a to b with increase in value of ¢, while less
growth in HTP is obtained along with noteworthy increase in PDP corresponding
to increment of m from b to c¢. Figures 11 and 12 depict the variations of ¢ and m
on HTP. It can be readily seen that ¢ has more effect on variations of HTP. As can
be seen from Figures 13 and 14, the value of PDP increases more as a result of
increase in m value rather than ¢. It is clear that such very useful informative
design facts and tradeoffs have been only unveiled by using the Pareto multi-
objective optimization approach of the simple polynomial neural network
metamodels of numerical simulation of Falkner-Skan wedge flow.

7. Conclusions

Genetic algorithms have been successfully used both for optimal design of
generalized GMDH type neural networks models of HTP and PDP of Falkner-Skan
wedge flow and for multi-objective Pareto optimization of constructed
metamodels. Two different polynomial relations for HTP and PDP have been
found by evolved GS-GMDH type neural networks using some validated numerical
simulations for input—output data of the Falkner-Skan wedge flow. The derived
polynomial models have been then used in an evolutionary multi-objective Pareto
optimization process so that some interesting and informative optimum design
aspects have been revealed for Falkner-Skan wedge flow with respect to the its
control variables of ¢and m. Consequently, some very important tradeoffs have
been obtained and proposed based on the Pareto front of two conflicting objective
functions. Such combined application of GMDH type neural network modeling of
input—output data and subsequent non-dominated Pareto optimization process of
the obtained models is very promising in discovering useful and interesting design
relationships.
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Nomenclature

G skin friction coefficient Greek

letters

C, specific heat at constant pressure a thermal diffusivity [m” s']

E mean square of error £ Hartree  pressure  gradient

parameter

f similarity function @ volume fraction of solid

H auxiliary function ) inverse mean square of error

k thermal conductivity [W m'K '] n similarity variable

m Falkner—Skan power law parameter H Viscosity

Nu, | local Nusselt number 0 dimensionless temperature

P, crossover probability P Density [Kg m™]

P, mutation probability Q total angle of the wedge

Pr Prandtl number T shear stress [N m™]

0 heat flux L kinematic viscosity [m™s]

Re | Reynolds number 4 stream function [s™']

T Temperature [K] subscripts

U free stream velocity [m s™'] f base fluid

u, v | velocity components [ms™'] nf nanofluids

u.(x) | wedge flow free stream velocity s nano-solid particles

x, y | cartesian coordinates [m] W condition at the wall

00 ambient condition
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Table 1. Thermophysical properties of base fluid and nanoparticles

Physical properties Fluid phase Cu
(water)

C, J/kg K) 4179 385

p (kg/m’) 997.1 8933

k (W/mK) 0.613 400

a x 107 (m%/s) 1.47 1163.1

Table 2. The values of PDP for various values of m and ¢

[2 Re,/ (m+1)]"*C;

) m Nor Azizah Yacob [27] bvp4c Rk4

0.1 0 0.7179 0.7179 0.7179
0.2 0.9992 0.9992 0.9992
0.1 0.5 1.5881 1.5882 1.5882
0.2 2.2105 2.2106 2.2106
0.1 1 1.8843 1.8843 1.8843
0.2 2.6226 2.6227 2.6227

Table 3. The values of HTP for various values of m and ¢

[(m+1) Re/ 2] Nu,

) m Nor Azizah Yacob [27] bvpdc Rk4

0.1 O 1.11 1.1101 1.1101
0.2 1.3342 1.3342 1.3342
0.1 0.5 1.3472 1.3473 1.3473
0.2 1.6048 1.6049 1.6049
0.1 1 1.4043 1.4043 1.4043
0.2 1.6692 1.6693 1.6693

Table 4. Design variables and objective functions values of significant Pareto
points

Point ¢ m HTP PDP

A 0.0514 0.0515 1.0584 0.7517
B 0.1999 0.0647 1.4162 1.3157
C 0.1987 0.9805 1.6639 2.5859
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Figure Caption

Fig. 1. Schematic of physical model

Fig. 2. A generalized GMDH network structure of a chromosome

Fig. 3. Crossover operation for two individuals in generalized GMDH type
networks

Fig. 4. Crossover operation on two generalized GMDH type networks

Fig. 5. Evolved structure of generalized GMDH type network for HTP value
Fig. 6. Evolved structure of generalized GMDH type network for PDP value
Fig. 7. Comparison of HTP for numerical and GMDH result

Fig. 8. Comparison of PDP for numerical and GMDH result

Fig. 9. Pareto front of two objectives HTP and PDP

Fig. 10. Variation of Pareto points in plane of m and ¢

Fig. 11. Variation of Pareto points in plane of HTP and ¢

Fig. 12. Variation of Pareto points in plane of HTP and m

Fig. 13. Variation of Pareto points in plane of PDP and ¢

Fig. 14. Variation of Pareto points in plane of PDP and m
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Nano-mayelarin paz-sokilli Falkner-Skan axininin neyron sabakalorin
optimallasdirilmasina asaslanan genetik alqoritmlardan istifads etmokls
Pareto optimallasdirilmasi

A. P.M.Fallah, A. Moradi, T. Hayat, Awatif A. Hendi
XULASO

Nano mayenin paz-gokilli axini zamani yaranan serhad zolaginin dayaniqliligi
adadi arashdirilir. Neyron sobokalor tipli verilonlorin iglommasi {igiin evolyusiya etmis qrup
metodu asasinda dizayn parametrlorine nozaran tozyiqin diismasi, Folkner-Skan qanununun
parametri ve istilik miibadilosi parametrinin modelllogdirilmasi {igiin iki metamodel toklif
olunur. Alinmis polinom neyron sabakalar coxparametrli genetik algoritmlordsn (dominant
olmayan secim {igiin genetik algoritmlari) istifads etmoklo Pareto optimal hallor adlanan
optimal hollor goxlugunun tapilmasi iigiin istifado olunur. Gostarilir ki, paz-shekilli axinin
Folkner-Skan c¢evirmolorindo istirak edon lazimli informasiya g¢ox kriteriyali Pareto
optimallagdirma naticasinds alds edils bilor.

Acar sozlor: nanofluid, Falkner-Skan, neyron sobaokolor, Pareto optimallagdirma,
genetik alqoritm.

ITapeto onTUMHU3anKsa KIMHO0OpPa3HOro naroka tuna ®anknepa-Crana
HAHO(IION/IA HCIIO0JIB3YS TeHETHYECKOI0 aJITOPUTMA OCHOBAHHOIO HA
MO/1eJIUPOBAHUSA HEIPOHHBIX ceTeil

AJLM. ®annax, A.Mopanu, T.XaiiaT, A.A. Xengu
PE3IOME

UucneHHO ucclefyercs  yCTOWYMBBIA  IBYMEpHBIH  TNOTPaHUYHBIM  CIOH
KJIMHOOOPa3HOIO MOTOKa CTaTHYeckoro HaHogumonpaa. [losydeHBl 1Ba MeTaMmoJIend Ha
OCHOBE DBOJIIOIIOHUPOBAHHOTO TPYIIT METO/a JJIsl 00pabOTKH JAaHHBIX THUIA HEHPOHHBIX
ceTell, Ul MOAENMPOBAHUS IapaMeTpa MaJeHHs JIABJICHHWS M ITapaMerpa TeluIooOMeHa
OTHOCHTEJIFHO MEPEeMEHHBIX MPOEKTUPOBAaHWA  JOJsl OOMEHa W TapamMerpa 3aKoHa
@onknepa-Ckana s MMOCMOTPEHHOW 3amaun. [lomydeHHbIE MOJIMHOMHAJIbHBIE
HEHPOHHBIE CETH HCIIONb30BAHbBI JUIA HaXOXICHHUS MHOXKECTBO ONTHMAIBHBIX PEIICHUH,
M3BECTHBIH Kak IlapeTo ONMTMMAanbHBIX PpEIMICHWH, C HCIOJIB30BAHHEM MHOTOLEIEBBIX
TEHETHIECKUX AITOPUTMOB (T€HETHYECKHE AJTOPUTMBI HE JTOMHHHPYEMOH COPTHUPOBKH).
[Tokazano, uro uHpopMalys, coiepkaieiics npencraBieHnn PonkHepa-CkaHa KIHMHO-
00pa3HOro MoToka MoXeT ObITh OOHapy)keHa B pe3yjbTaTe MHOTOKpuUTepuanbHoi [lapero
ONTUMH3AIHH.

KaioueBsie cioBa: Hanomronn, ®@ankuep-Ckan, HelipoHHbIe ceTH, [lapero
ONTUMU3ALMS, TEHETUYECKUN aITOPUTM.
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