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Abstract. Local RBF collocation method based on multiquadric and inverse multiquadric
basis has been presented for solving time-dependent convection-diffusion equation. Our
purpose is to reduce the computational cost by providing matrix form of local collocation
method. The approach is based on square stencils with sizes of 3x 3 and 5x 5 around
each interior collocation point. This approach has been applied to solve two dimensional
convection-diffusion equation by converting the problem to a sparse global system of linear
equations with low condition number. The obtained numerical results verify the efficient

and accurate nature of our method.
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1. Introduction

Partial Differential Equations (PDEs) have been used to describe a wide
variety of physical and engineering phenomena. Nowadays numerical solution of
PDEs is one of the most common issues in applied mathematics (24,22). Many
approaches have been developed to solve these equations, such as Finite Volume
(FV), Finite Element (FE), Finite Difference (FD), spectral methods, Laplace
transform, multiquadric trigonometric quasi-interpolation (18,14,21,1,31,10), but
these approaches are limited to a mesh on domain and may not been effective in
5high-dimensional spaces. In real application, it is necessary to solve problems
using of scattered data especially in multidimensional domains that it motivated
scientists to investigate meshless methods (2, 5,6,11,13, 12, 17, 19). One of these
meshless methods is Radial Basis Functions (RBFs). In 1990, for the first time,
Edward Kansa (15,16) used RBF collocation method for solving partial
differential equations.

Although RBF methods have high accuracy but are ill-condition. Many researchers
bypassed this problem with various methods like preconditioning, domain
decomposition (30,8) and use of compactly supported RBF that was proposed by
Wendland and Wu (27,29).

An investigation for reducing of ill-conditioning is combining the Radial Basis
Function and Finite Difference (RBF-FD) which is a local RBF collocation method
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(3,7, 9,20, 23, 4, 28). In (26) the authors used finite collocation method for the
steady state boundary value problem but in this paper we used their idea to develop
a local collocation method for solution of following time dependent partial
differential equation.

W:L[u(x,t)]w/(x) in Q (1)
u(x,0)=f(x) in Q (2)
Blu(x.t)]=g(xt) , on 0Q (3)

where the operator L is defined by:

2 2
Lz[kxa—2+kya—2+vxi+vyi} (4)
OX oy OX oy
The outline of this manuscript as follow:
In section 2, the discretization of time-dependent problems, by using finite
difference method is given and local collocation method, finite collocation, on the
square stencil is analyzed in this section. In section 3, the numerical results of
proposed approach is presented that verify validity and accuracy of this approach
and at the end, in section 4 conclusion is given.

2. Collocation method for time-dependent problems

In this section, by using temporal discretization of equations (1)-(3) based

on finite difference method we have:
n n-1
u —u _ n n-1
A—t_eL[u J+(@-0)L[u™ ]+ (x), (5)
where 0< @ <1. Above equation can be written in following operator form

E[u”]:ﬁ[u“’l}rm‘}’(x), (6)
where L=1-6AtL, L=1+(1-0)AtL.
Therefore at each time step a non-homogeneous boundary value problem is
obtained. By denoting ¢(X) = L[u”‘1]+At‘P(x), the Eq.(6) can be reduced to a
steady state problem. Hence we will have:
Llu"[=p(x) (7)
u(x,0)="f(x) in Q (8)
Blu(xt,)]=g(xt,) on oQ, n=1..N, (9)
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where N, is the number of time steps. So at each time step we have to solve a

steady state problem by using finite collocation method.
2.1.Finite collocation method

In this method a set of points are selected in the domain and its boundary,
randomly or regularly in which the total number of interior points of the domain is
N. Around of each strictly-interior point, a stencil is considered, this interior point
is called centerpoint of respective stencil. Connection of centerpoint to its
surrounding points can be chosen in various forms like circle, square and other
proper fashions. In this work, square stencils are chosen in size of 3x 3 and 5x5.
Points in the stencils are divided as follows:

L ={X0 G, %0 L, ={X %0 X, | (10)
s.t n(ll):kz—(k—Z)Z:ml, n(lz):(k_z)zzmz’
where Kk is size of the stencil, |, is set of points that are placed on the stencil

margin (solution centers) and |, is set of points in the interior of stencil (PDE

centers) (see figure 1). Therefore in the domain of €2 in the relation (1), there are
several overlapping stencils. Each stencil collocates L operator in its interior points

(1,) and collocates solution value in the marginal points of stencil. For each
stencil, a local RBF collocation is proposed:

()= 3t (=) )

e o 0 o o
® ¢ ¢ 4 o
® ¢ X ¢ o
® 4 ¢ ¢ o
oo o o o

Figure 1: A stencil in size 5x5, Blue circles represent solution centers, Red
diamonds show PDE centers and black cross show centerpoint.

where {X,,X,,...,X, } = R" is aset of points, ||| is Euclidean normand ¢(r)isa

radial basis function. Parameter c is called shape parameter which play important
role on function shape and must be chosen properly according to the situation.
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and so that N local collocation systems can be obtain as follows:

where

and
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_ " _
u2
o, :
(04
ﬂ,(s) _ :2 d(S) = Uy |, s=12,..,N (16)
f
amﬁmz m.1+l
L fmﬁ—m2 |

where A® s called interpolation coefficient and d® is data vectors of
corresponding system. The vector d"* includes values of ( f,) and(u,) that ( f,)

are values of L operator and (ui) are unknown values in margin of stencil except

that points are placed on the boundary of problem (aQ) . By using relation (11)
we obtain:

u(s)(x):Q(S)(x)/I(S), (17)
which Q(S) is called a reconstruction vector for stencil s,
Q" (x)=[ (pe=xl)-: () (e =x1) -2 (be—x. )]

After replacement of centerpoint, xf) ,in (17) , we have:

i
X=Xy,

_oW (ng)) A(s)}*1 qe
W (x§5> ) qe) (18)

C

=)
where vector W(s)(xgs)):Q(s)(x(s))[A(s)] is called weight vector. Above

equation is proposed for each stencil in centerpoints, so known values are placed
on the right side of above equation and unknown values on the left side, so N
simultaneous equations is obtained that led to a sparse global system. The

approximation solution (ui) is achieved by solving of this global system. It should
be noted that when 5% 5 stencil or larger, intercept domain boundary, the usual
method is to eliminate external points of domain that decrease the size of stencil
(see figure.2(a)), but in order to maintaining of convergence rate, it is better that

the size of stencils be considered fixed, thus stencil is shifted to the interior of the
domain (see figure. 2(b))(26).
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(a) Stencil truncation (b) Stencil extension

Figure 2: left figure show stencil truncation and right figure show stencil extension,
square points are boundary values, Blue circles represent solution centers, Red
diamonds show PDE centers and black cross show centerpoint.

2.2. Computational remarks
According to relation (13), the matrix A® 1<s<N, only depends on distance of

the points (”xi - X ||,1s i, j< N), so it is enough that this matrix be computed

just at a point. On the otherhand, vector Q(S) in 5x 5 stencil should be computed in

the nine cases. The first case is for places that stencil doesn't interrupt boundary of
the domain, so it has not been shifted to interior of the domain (see figure 3). The
next four cases are when stencil interrupt only one of the four boundaries of the
domain. The last four cases are for the four points in corner of the domain that
intercept two boundaries simultaneously. The above discussion and relation

W(S)(xgs)):Q(s)(XES))[A(S) T show that we need to compute W' 1<s<N,

that isn't depends on s in case 3x3 stencil and so the value of W in 5x 5 stencil
must be calculated only in nine points.

For computing (o(x) at each time step, at first we solve global system and then
reconstruction vector is used for collocation points as follow (25):

A~

Clu(x)]= L[ (<) [ A" ] a9 =W () 1<5<N. (19
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Figure 3: A stencil in size 5x5 in interior of domain
3. Numerical results

In this section, the local collocation method is described in section (2) based
on multiquadric and inverse multiquadric basis

((zﬁc (r)=~c?+r?,4,(r)=1/yc* +r? ) is implemented for solving 2D unsteady

convection-diffusion equation:
ou ou , du ou _ au
—=k,—+k,—+V,—+V,—,
ot OX oy OX oy

such that x,, x, € [0,1] with the following Boundary and initial conditions:

u(0,y,t)=ae" (1+ e’°yy),u (Lyt)=ae" (e*x +e’°yy) t>0,

(20)

U(x,0,t)=ae" (1+e ), u(x L) =ae” (e +e™),

u(x,y,0)= a(e*CXX +e’°yy).
The exact solution is given by:
u (X, y, t) — aebt (e—cxx + enyY) ’

v, £4/v7 +4K,b o IAZENARR .
2k Y 2k '
X y

where C, =
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: . Voo
In this case v, =v, =v and k, =k, =k with Peclet number pe = Points is

discretized with M +1 points in x,y directions (N =M 2) and N, :i int

direction, here At=1/100 and T =0.1. Error is approximated by:

RE.error =

where U is approximation solution and u is exact solution. This problem has been
solved with optimal values of shape parameters c,, =3,2.9,2.8,2.5,2.9 for

multiquadric basis and ¢, =1,2,4,4,5 for inverse basis and 3x3 stencil (see figure
4).

A8 ' 1 25F

N

log T RMES, & rroe)

5 . . . .
A 4 48 DB 4T 406 1.4 A3 12 11 1 09 o4 ot 0.8
log 10{1/M) log 10 1/N)

Figure 4: Relative error for 3x 3 stencil, left figure shows multiquadric method and
right figure shows inverse method ,6 =0.5 ,a=1 ,b=0.1 , A=1/100, v=1 , k=1,
pe=1.

The errors in the solution for different values of M=5,10,15,20,25 have been
tabulated in tablel . These results show that errors in the solution decrease with
increasing of points.

Tablel: Relative error for 3x 3 stencil and optimal shape parameter

N C,x  RE.error(multiquadric) c,, RE.error(inverse)
25 3 1.6828274x10* 1 0.00365570

100 2.9 3.827216x10° 2 5.999228x10°

225 2.8 1.580940x105 4 1.1091640%10®
400 2.5 8.280715x10° 4 5.5726202x10®

625 2.9 4.730291x10° 5 4.049818x10°
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In case 5x5 stencil, results are obtained with optimal values of shape parameter
Cop =6.2,3.7,1.6,0.86,0.675 for multiquadric basis and c,, =8.5,6,2,10.5,9 for
inverse multiquadric basis, the errors of presented method for M=5,10,15,20,25
have been tabulated in table2 . These results verify validity and accuracy of
presented method (see figure 5).

-
log10{RMS.ermor)

log10({RMS _error)

3 4.1 _’:‘gﬁ:tm 09 08 497 0 1.4 4.3 A2 A1 Iog,;::.m 0.9 {8 L7 06
Figure 5:Relative error for 5x 5 stencil, left figure shows multiquadric basis and
right figure shows inverse basis, #=0.5,a=1, b=0.1, A=1/100, v=1, k=1, pe=1.

Table2: Relative error for 5x5 stencil and optimal shape parameter

N C,x  RE.error(multiquadric) c,, RE.error(inverse)
25 6.2 1.337038x10° 8.5 1.295745%10°

100 3.7 2.201251x10® 6 4.241687x10°

225 1.6 1.904626x10° 2 2.352594x10®
400 0.86 1.511389x10°®  10.5  1.321409x10°

625 0.675 1.082512x10° 9 1.305637x10°

3. Conclusion
It is known that the global collocation method yield system that is ill-condition, but

in the case of local collocation method, such ill-conditioning can be controlled. In
this paper, the local collocation method based on multiquadric and inverse
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multiquadric basis is applied with two different stencils. The arising global system
can be solved easily and the condition number of this system is low. The errors in
tables land 2 show validity and accuracy of this approach. In addition for
improving this algorithm and for reducing CPU time we explain this algorithm in
matrix form. computational remarks in subsection (2.2) play key role in reducing
computatioal time.
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Mertoa 10KaJBLHOr0 KOJJIOKALMHM /1JIsl pelieHNs YypaBHEeHUs] KOHBEKIUH-
Augpdy3un 3aBUCALLET0 OT BpeMeHHU

Hoxamua Pammaaunus’, Maxan Maxaasu®, Amupxoceiin Co6xanu’
UIxona maTemaruku, UpaHckuil yHuBepcuteT Hayky u Texnuky, Hapmaxk, XeHram,
Terepan, Upan
e-mail: rashidinia@iust.ac.ir

PE3IOME

Jns pemieHust ypaBHEHHs] KOHBEKIMU-ITU(PQY3UH 3aBUCSIIETO OT BPEMEHH ObLI
MIPEACTaBICH JOKAIbHBIN MeTon Komnokamuu RBF Ha OCHOBE MyJBbTHKBaIpHYECKOTO H
0o0paTHOrO MyJIbTHKBaApHdeckoro Oasuca. Hamia menb - COKpaTHTh BBIYHCIUTEIbHBIC
3aTpaThl, NMPEJOCTaBUB MATPHUHYI0 (opMy MeToma JOKaJIbHOTO Kojuiokamuu. Iloaxox
OCHOBaH Ha KBaJIpaTHBIX Tpadaperax ¢ pasmepamMu 3 X 3 m 5 X 5 BOKpyr Kaxmoit
BHYTPEHHEH KOJUIOKAMHM. OTOT MOAXOJ OBUI NPHMEHEH Ui PEUICHHs ABYMEPHOTO
ypaBHEHHsS KOHBEKUMH-IU(PPY3UH IyTeM NpeoOpa3oBaHMs 3alaud B Pa3pPEKEHHYIO
MIOOANBHYIO CUCTEMY JIMHEHHBIX YPaBHEHHH C MajbIM 4HCIOM ycioBuit. [lonydeHHbie
YHCJICHHBbIE PE3YNbTAaThl IOATBEPKAAT I(PQEKTUBHBIH M TOYHBII XapakTep Hallero
METOAA.

KiroueBble ciioBa: MHoOrokBaapatuuHas U oOpaTHasi MyJIbTHKBaJpHyecKas paauaiibHas
OazucHas (GyHKUMS, YpaBHEHHWE KOHBEKUMHU-TU(dy3uM 3aBUCAIIee OT BPEMEHH, METO.
KOHEYHOW KOJIJIOKAIUH.
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