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Abstract.  Local RBF collocation method based on multiquadric and inverse multiquadric 
basis has been presented for solving time-dependent convection-diffusion equation. Our 
purpose is to reduce the computational cost by providing matrix form of local collocation 
method. The approach is based on square stencils with sizes of  3× 3  and  5× 5  around 
each interior collocation point. This approach has been applied to solve two dimensional 
convection-diffusion equation by converting the problem to a sparse global system of linear 
equations with low condition number. The obtained numerical results verify the efficient 
and accurate nature of our method.  
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1. Introduction  

 
 Partial Differential Equations (PDEs) have been used to describe a wide 
variety of physical and engineering phenomena. Nowadays numerical solution of 
PDEs is one of the most common issues in applied mathematics (24,22). Many 
approaches have been developed to solve these equations, such as Finite Volume 
(FV), Finite Element (FE), Finite Difference (FD), spectral methods, Laplace 
transform, multiquadric trigonometric quasi-interpolation (18,14,21,1,31,10), but 
these approaches are limited to a mesh on domain and may not been effective in 
5high-dimensional spaces. In real application, it is necessary to solve problems 
using of scattered data especially in multidimensional domains that it motivated 
scientists to investigate meshless methods (2, 5,6,11,13, 12, 17, 19). One of these 
meshless methods is Radial Basis Functions (RBFs). In 1990, for the first time, 
Edward Kansa (15,16)  used RBF collocation method for solving partial 
differential equations. 
Although RBF methods have high accuracy but are ill-condition. Many researchers 
bypassed this problem with various methods like preconditioning, domain 
decomposition (30,8) and use of compactly supported RBF that was proposed by 
Wendland and Wu (27,29).  
An investigation for reducing of ill-conditioning is combining the Radial Basis 
Function and Finite Difference (RBF-FD) which is a local RBF collocation method 
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(3,7, 9,20, 23, 4, 28). In (26) the authors used finite collocation method for the 
steady state boundary value problem but in this paper we used their idea to develop 
a local collocation method for solution of following time dependent partial 
differential equation. 

                
( ) ( ) ( ),

,
u x t

L u x t x
t

ψ
∂

= +  ∂
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where the operator  L  is defined by: 
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 The outline of this manuscript as follow: 
In section 2, the discretization of time-dependent problems, by using finite 
difference method is given and local collocation method, finite collocation, on the 
square stencil is analyzed in this section. In section 3, the numerical results of 
proposed approach is presented that verify validity and accuracy of this approach 
and at the end, in section 4 conclusion is given. 
 
2. Collocation method for time-dependent problems 
 
 In this section, by using temporal discretization of equations (1)-(3) based 
on finite difference method we have: 

 ( ) ( )
1

11
n n

n nu u L u L u x
t

θ θ
−

−−    = + − +Ψ   ∆
,                                              ( )5  

where  0 1θ≤ ≤ . Above equation can be written in following operator form 
        ( )1ˆ ,n nL u L u t x−   = + ∆ Ψ                                                                 ( )6  

where   1L tLθ= − ∆ ,    ( )ˆ 1 1L tLθ= + − ∆ . 
Therefore at each time step a non-homogeneous boundary value problem is 
obtained. By denoting ( ) ( )1ˆ ,nx L u t xϕ − = + ∆ Ψ   the Eq.(6) can be reduced to a 
steady state problem. Hence we will have:  
                                        ( )nL u xϕ  =                                                               ( )7  

                                      ( ) ( ),0u x f x=    in  Ω                                                   ( )8  

                              ( ) ( ), ,n nB u x t g x t=     ,on   ∂Ω ,  1,..., Ntn =                  ( )9  
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where Nt   is the number of time steps. So at each time step we have to solve a 
steady state problem by using finite collocation method. 
2.1.Finite collocation method 
 In this method a set of points are selected in the domain and its boundary, 
randomly or regularly in which the total number of interior points of the domain is 
N. Around of each strictly-interior point, a stencil is considered, this interior point 
is called centerpoint of respective stencil. Connection of centerpoint to its 
surrounding points can be chosen in various forms like circle, square and other 
proper fashions. In this work, square stencils are chosen in size of 3× 3 and 5×5. 
Points in the stencils are divided as follows: 
 
         { }11 1 2, ,..., ,b b b

mI x x x=           { }22 1 2, ,..., ,i i i
mI x x x=                                     ( )10  

s.t    ( ) ( )22
1 12 ,n I k k m= − − =       ( ) ( )2

2 22 ,n I k m= − =  

where  k  is size of the stencil, 1I  is set of points that are placed on the stencil 
margin (solution centers) and 2I  is set of points in the interior of stencil (PDE 
centers) (see figure 1). Therefore in the domain of  Ω   in the relation (1), there are 
several overlapping stencils. Each stencil collocates L operator in its interior points 
( 1I ) and collocates solution value in the marginal points of stencil. For each 
stencil, a local RBF collocation is proposed:  

                                   ( ) ( )2
1

,
N

i c i
i

u x x xα φ
=

= −∑                                           ( )11  

   
Figure 1: A stencil in size 5×5, Blue circles represent solution centers, Red 
diamonds show PDE centers and black cross show centerpoint. 
 
where { }1 2, ,..., d

Nx x x R⊂  is a set of points, .  is Euclidean norm and  ( )rϕ is a 
radial basis function. Parameter c is called shape parameter which play important 
role on function shape and must be chosen properly according to the situation. 
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and so that N local collocation systems can be obtain as follows: 
                          ( ) ( ) ( )s s sA dλ =         1, 2,...,s N= ,                                      ( )12  
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where ( )sλ   is called interpolation coefficient and ( )sd  is data vectors of 
corresponding system. The vector ( )sd includes values of  ( )if  and ( )iu  that ( )if
are values of  L  operator and ( )iu  are unknown values in margin of stencil except 

that points are placed on the boundary of problem ( )∂Ω  . By using relation (11) 
we obtain: 
                               ( ) ( ) ( ) ( ) ( )s s su x Q x λ= ,                                                        ( )17  

which ( )sQ  is called a reconstruction vector for stencil s, 

  ( ) ( ) ( ) ( ) ( ) ( )1 21 1... ... .s b b i i
c c m c c mQ x x x x x x x x xφ φ φ φ = − − − −   

After replacement of centerpoint, ( )s
cx  , in ( )17  , we have: 

                 ( ) ( )( ) ( ) ( )( ) ( )s s s s s
c cu x Q x λ=  

                                ( ) ( )( ) ( ) ( )1s s s s
cQ x A d

−
 =    

                                ( ) ( )( ) ( )s s s
cW x d= ,                                                               ( )18  

where vector ( ) ( )( ) ( ) ( )( ) ( ) 1s s s s s
c cW x Q x A

−
 =    is called weight vector. Above 

equation is proposed for each stencil in centerpoints, so known values are placed 
on the right side of above equation and unknown values on the left side, so N 
simultaneous equations is obtained that led to a sparse global system. The 
approximation solution ( )iu  is achieved by solving of this global system. It should 
be noted that when 5× 5 stencil or larger, intercept domain boundary, the usual 
method is to eliminate external points of domain that decrease the size of stencil 
(see figure.2(a)), but in order to maintaining of convergence rate, it is better that 
the size of stencils be considered fixed, thus stencil is shifted to the interior of the 
domain (see figure. 2(b))(26). 
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Figure 2: left figure show stencil truncation and right figure show stencil extension, 
square points are boundary values, Blue circles represent solution centers, Red 
diamonds show PDE centers and black cross show centerpoint. 
 
2.2. Computational remarks 
According to relation (13), the matrix ( )sA ,1 s N≤ ≤ , only depends on distance of 
the points ( ),1 ,i jx x i j N− ≤ ≤ , so it is enough that this matrix be computed 

just at a point. On the otherhand, vector ( )sQ  in 5× 5 stencil should be computed in 
the nine cases. The first case is for places that stencil doesn't interrupt boundary of 
the domain, so it has not been shifted to interior of the domain (see figure 3). The 
next four cases are when stencil interrupt only one of the four boundaries of the 
domain. The last four cases are for the four points in corner of the domain that 
intercept two boundaries simultaneously. The above discussion and relation 

( ) ( )( ) ( ) ( )( ) ( ) 1s s s s s
c cW x Q x A

−
 =   show that we need to compute ( ) ,1sW s N≤ ≤ , 

that isn't depends on s in case 3×3 stencil and so the value of ( )sW  in  5× 5  stencil 
must be calculated only in nine points. 
For computing ( )xϕ  at each time step, at first we solve global system and then 
reconstruction vector is used for collocation points as follow (25): 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )1, ,
ˆ

ˆ ˆ ,1 .s s s n s n s sn
c LL u x L Q x A d W x d s N

−     = = ≤ ≤               ( )19  
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Figure 3: A stencil in size  5×5  in interior of domain 
 

3. Numerical results 
 
        In this section, the local collocation method is described in section (2) based 
on multiquadric and inverse multiquadric basis 

( ) ( )( )2 2 2 2, 1/c cr c r r c rφ φ= + = +  is implemented for solving 2D unsteady 

convection-diffusion equation: 

                     
2 2

2 2 ,x y x y
u u u u uk k v v
t x y x y

∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂
                                      ( )20  

 such that [ ]1 2, 0,1x x ∈ with the following Boundary and initial conditions: 

( ) ( ) ( ) ( )0, , 1 , 1, ,y yxc y c ycbt btu y t ae e u y t ae e e− −−= + = +  0t > , 

( ) ( ) ( ) ( )x,0, 1 , x,1, ,yx x cc x c xbt btu t ae e u t ae e e−− −= + = +  

( ) ( )0 ., , yx c yc xa e eu x y −−= +  

The exact solution is given by: 

( ) ( ), , t yx c yc xbtae eu x y e−−= + , 

where 
22 44

0, 0
2 2

y y yx x x
x y

x y

v v k bv v k b
c c

k k
± +± +

= > = > . 
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In this case x yv v v= =  and x yk k k= =  with Peclet number 
vpe
k

= . Points is 

discretized with 1M +   points in x,y  directions ( )2N M=  and t
TN

t
=
∆

 in t 

direction, here 1/100t∆ =  and 0.1T = . Error is approximated by: 

                      
( )

2
2

1
2. ,

N

j j
j

u u
RE error

N
=

−
=
∑ 

 

where u   is approximation solution and u is exact solution. This problem has been 
solved with optimal values of shape parameters  copt =3,2.9,2.8,2.5,2.9  for 

multiquadric basis and copt =1,2,4,4,5  for inverse basis and  3×3  stencil (see figure 
4) . 

 
Figure 4: Relative error for 3× 3 stencil, left figure shows multiquadric method and 
right figure shows inverse method ,θ  =0.5 ,a=1 ,b=0.1 , ∆=1/100, v=1 , k=1 , 
pe=1. 
 
The errors in the solution for different values of M=5,10,15,20,25 have been 
tabulated in table1 . These results show that errors in the solution decrease with 
increasing of points. 
 

Table1: Relative error for  3× 3  stencil and optimal shape parameter 
N            optc       ( ).RE error multiquadric   optc    ( ).RE error inverse   

   25            3                1.6828274×10-4         1           0.00365570 
   100          2.9              3.827216×10-5          2           5.999228×10-5  
   225          2.8              1.580940×10-5          4           1.1091640×10-5 
  400           2.5              8.280715×10-6          4           5.5726202×10-6 
   625          2.9              4.730291×10-6          5           4.049818×10-6 
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In case  5×5  stencil, results are obtained with optimal values of shape parameter 
copt =6.2,3.7,1.6,0.86,0.675 for multiquadric basis and copt =8.5,6,2,10.5,9  for 
inverse multiquadric basis, the errors of presented method for  M=5,10,15,20,25  
have been tabulated in table2 . These results verify validity and accuracy of 
presented method (see figure 5). 
 

 
Figure 5:Relative error for 5× 5 stencil, left figure shows multiquadric basis and 
right figure shows inverse basis, θ =0.5 , a=1 ,  b=0.1 , ∆=1/100, v=1, k=1 , pe=1. 
 
 

Table2: Relative error for  5×5  stencil and optimal shape parameter 
 

N            optc       ( ).RE error multiquadric   optc    ( ).RE error inverse   
   25            6.2                1.337038×10-5        8.5        1.295745×10-5 
   100          3.7                 2.201251×10-6        6           4.241687×10-6  
   225          1.6                 1.904626×10-6        2          2.352594×10-6 
  400           0.86               1.511389×10-6       10.5      1.321409×10-6 
   625          0.675              1.082512×10-6        9          1.305637×10-6 

 
 
 
3.    Conclusion 
 
It is known that the global collocation method yield system that is ill-condition, but 
in the case of local collocation method, such ill-conditioning can be controlled. In 
this paper, the local collocation method based on multiquadric and inverse 
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multiquadric basis is applied with two different stencils. The arising global system 
can be solved easily and the condition number of this system is low. The errors in 
tables 1and 2 show validity and accuracy of this approach. In addition for 
improving this algorithm and for reducing CPU time we explain this algorithm in 
matrix form. computational remarks in subsection (2.2) play key role in reducing 
computatioal time. 
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Метод локального коллокации для решения уравнения конвекции-
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РЕЗЮМЕ  
 

Для решения уравнения конвекции-диффузии зависящего от времени был 
представлен локальный метод коллокации RBF на основе мультиквадрического и 
обратного мультиквадрического базиса. Наша цель - сократить вычислительные 
затраты, предоставив матричную форму метода локального коллокации. Подход 
основан на квадратных трафаретах с размерами 3 × 3 и 5 × 5 вокруг каждой 
внутренней коллокации. Этот подход был применен для решения двумерного 
уравнения конвекции-диффузии путем преобразования задачи в разреженную 
глобальную систему линейных уравнений с малым числом условий. Полученные 
численные результаты подтверждают эффективный и точный характер нашего 
метода. 
Ключевые слова: Многоквадратичная и обратная мультиквадрическая радиальная 
базисная функция, уравнение конвекции-диффузии зависящее от времени, метод 
конечной коллокации. 
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