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Abstract. In this paper, we established the boundedness for a large class of multisublinear 

operators  ( )mnT m ,0,,   generated by multilinear fractional integral operator on 

product generalized Morrey spaces ( ) ( )n

p

n

p RMRM
mm  ,, ...

11
 . We find the  

sufficient conditions on ( ) ,,...,1 m  a which ensures the boundedness of the operators 

mT ,  from ( ) ( )n

p

n

p RMRM
mm  ,, ...

11
  to ( )n

q RM ,  for 

.1...11 1 nppq m −++=  The multisublinear  operators  under consideration  

contain integral operators  of harmonic  analysis such as multi-sublinear fractional maximal 

operators ,,m
M


 multilinear fractional integral operators ,,m

I


 etc. 
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 1. Introduction. 

Multilinear Calderόn-Zygmund  theory is a natural generalization of the 

linear case. The initial work on the class of  multilinear Calderόn-Zygmund 

operators  was  done by Coifman and Meyer  in  2  and was later systematically 

studied  by Grafakos and Torres in   6,5 .  

The classical Morrey spaces, introduced by Morrey  18  in 1938 , have 

been studied intensively by various authors and together with Lebesgue spaces play 

an important role in the theory of partial differential equations. Although such 

spaces allow to describe local properties of functions better than Lebesgue spaces, 

they have some unpleasant issues. It is well known that Morrey spaces are non 

separable and that the usual classes of nice functions are not dense in such spaces. 

Moreover, various Morrey spaces are defined in the process of study. Guliyev, 

Mizuhara and Nakai   19,16,8  introduced generalized Morrey spaces ( )n

p RM ,  
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 ( ).9,10,14,20 also see,   In  10  is defined the generalized Morrey spaces ,pM  

with normalized norm 

( )
)),((

11

0,

),(,sup
, rxBL

p

rRx
M pnP

frxBrxf
−−



 


, 

where the function   is a positive measurable  function  on ( ) ,0nR . Here  and 

everywhere  in the sequel ),( rxB  is the ball in 
nR  of radius r  centered  at  x  and 

n

nrvrxB =),(   is its  Lebesgue measure , where nv  is the  volume of  the unit  

ball in 
nR .   

For 
nRx  and ,0r  we  denote by  ),( rxB  the  open ball centered  at 

x  of radius r , and by  ),( rxBC
 denote its complement. Let ),( rxB be the 

Lebesgue measure of the ball ),( rxB . We denote by  f


 the m -tuple 

( )mfff ,...,, 21  , ( )nyyy ,..,1=


 and ....1 ndydyyd =


 

      Let ( ) ( )nloc

p

nloc

p RLRLf
m

 ...
1


. The multi-sublinear fractional maximal 

operator mM ,  is defined by 

( )( ) ( ) .0,
),(

1
),(sup

),(
10

, mndyyf
rxB

rxBxfM ii
rxB

i

m

j

n

r
m = 

=







 

 In  15  Kenig  and Stein studied the following multilinear fractional integral, 

( )( )
( ) ( )

( )( )
,...

,...,

...
21

1

11
, m

R mn

m

mm
m dydyyd

yxyx

yfyf
xfI mn −

−−
=




 

and showed that mI ,   is bounded  from  product ( ) ( )n

p

n

p RLRL
m

...
1

  to 

( )n

q RL  with  01...11 1 −++= nppq m   for each ( ).,..,11 mipi =   If 

some ,1=ip   then mI ,   is bounded from ( ) ( )n

p

n

p RLRL
m

...
1

 to  ( )n

q RWL , 

where ( )n

q RWL   denotes the weak pL -space of measurable functions on 
nR  . 

Obviously, the multilinear fractional integral operator  mI ,  is a natural 

generalization of the classical fractional integral operator .1, II    

It is  well  known that multi-sublinear fractional maximal operator and 

multilinear  fractional integral  operator  play an important  role in  harmonic  

analysis  ( ).1,4,15,17 also see,  
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Suppose that  ( )mnT m ,0,,   represents a multilinear or a multi-sublinear 

operator, which satisfies that for any      ( ) ( )nn RLRLf 11 ...


 with compact 

support and  
m

j

jpfx
1

sup
=

  

( )( )
( ) ( )

( )( )
 −

−−


mnR

mmn

m

mm

m
dydydy

yxyx

yfyf
cxfT ....

,...,

...
21

1

11

0, 


(1) 

for some  ( )mn,0 , where 1c  is independent of  f and x . 

The condition (1) is satisfied by many interesting operators in harmonic 

analysis, such as the multi-sublinear fractional maximal operator, multilinear 

fractional integral operator, and so on  ( ).detailsfor4,12,15  see   

In this work, we prove  the boundedness of  the multi-sublinear operator 

( )mnT m ,0,,   satisfies the condition (1)  generated by multilinear fractional     

integral operator from  
mmpp MM  ,, ...

11
  to ,qM , if    mpp ,...,1 1  and 

nppq m −++= 1...11 1 , and from  the  space 
mmpp MM  ,, ...

11
  to the 

weak  space ,qWM , if   mpp ,...,1 1 , nppq m −++= 1...11 1  and 

at  least one ip  equals one (Theorem 2.3). Finally, as applications we apply this 

result to several particular operators such as the multi-sublinear  fractional maximal 

operator and multilinear fractional  integral operator. 

By BA
˜
 we mean that  CBA   with some positive constant C  

independent of appropriate quantities. If  BA
˜
  and AB

˜
 , we write BA   and 

say that A  and B  are equivalent. . 

 

2. Main Results 

 

In this section, we will prove the boundedness of multi-sublinear operators 

( )mnT m ,0,,   generated by multilinear fractional integral operator on product 

generalized Morrey spaces ( ) ( )n

p

n

p RMRM
mm  ,, ...

11
 . 

We  find it convenient to define the generalized Morrey spaces in the form 

as follows. 
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Definition 2.1. Let  ( )rx,  be a positive measurable function on ( ) ,0nR  and 

 p1 . We denote by  ( )n
pp RMM  ,,   the generalized Morrey space, 

the space of all functions ( )nloc
p RLf   with finite quasinorm 

( ) ( )
( )( )rxBL

p

rRx
M pnp

frxBrxf
,

1
1

0,

,,sup
,

−−



= 


. 

Also by ( )n

pp RWMWM  ,,    we denote the weak generalized Morrey space of 

all functions ( )nloc

p RWLf   for which 

( ) ( )
( )( )

=
−−


rxBWL

p

rRx
WM pnp

frxBrxf
,

1
1

0,

,,sup
,




 

Lemma 2.1.  3 Let  ( )rx,   be a positive measurable function on ( ) ,0nR  . 

( )i   If  

( )
=

−

 rx

r p

n

rt ,
sup


   for some 0t  and for all  ,nRx               (2) 

then ( ) =n

p RM , . 

( )ii  If  

( ) =
−



1

0

,sup rx
r




  for some 0  and for all  ,nRx           (3) 

then ( ) =n
p RM , . 

Remark 2.1. We denote by p  the sets of all positive measurable functions   

on  ( ) ,0nR  such that for all 0t , 

( )
( )

,
,

sup

,





−



 tL

p

n

Rx rx

r

n 
      and    ( )

( )
,,sup

,0

1




−

 tLRx

rx
n

  

respectively. In what follows, keeping in mind Lemma 2.1, we always assume that 

p . 

We will use the following statements on the boundedness of the weighted 

Hardy operator 

( ) ( ) ( ) ,0,: = 


tdttwtgrgH
r

w  

where w  is a fixed function non-negative and measurable on ( ),0 . 
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The following theorem was proved in  11  ( ).13  alsosee   

Theorem 2.1.   11  Let  21,vv  and  w  be positive almost everywhere and 

measurable  functions on  ( ),0 . The inequality 

( ) ( ) ( ) ( )rgrvessCrgHrvess
r

w
r

1
0

2
0

supsup


                  (4) 

holds for some  0C  for all non-negative and non-decreasing g on ( ),0  if and 

only if 

( )
( )

( )
= 



 r
str sv

dttw
rvB

1

2
0 sup

sup:                      (5)  

Moreover, the value BC =  is the best constant for (4). 

Remark 2.2. In  (4)-(5)  it is assumed that .00 =   

In the following lemma we get Guliyev local estimate 

 8,9,10  example,forsee,(   1)m case in the 12 and 1mcasethein =  for 

the operator mT , . 

Theorem 2.2.  Let  mpp ,...,1 1   and  mn0  with 

nppq m −++= 1...11 1   and   
=

=
m

i

i

1

 where each i  satisfies 

i

i
p

n
0  . Let also  mT ,  be a multi-sublinear operator which satisfies the 

condition (1) and bounded from  ( ) ( )n

p

n

p RLRL
m

 ...
1

  to ( )n

q RL  for  

,,...,1,1 mipi =   and bounded from  ( ) ( )n

p

n

p RLRL
m

 ...
1

 to ( )n

q RWL   

for mipi ,...,1,1 = . Then for mipi ,...,1,1 =  the inequality 

( )( )
( )( ) ( )( )

,
,

1

1

˜,
,

0
0

dtftrxfT
txBLi

m

i
r

p

n

q

n

rxBL
m

ip

i
i

q


=

 −−







                       (6) 

holds for any ball ( )rxB ,0  and for all  ( ) ( )nloc

p

nloc

p RLRLf
m

 ....
1


 Moreover, if 

at least one  ip  equals one the inequality 

( )( )
( )( ) ( )( )

,
,

1

1

˜,, , dtftrxfT
txBLi

m

i
r

p

n

q

n

rxBWLm
ip

i
i

q


=

 −−







                               (7) 

holds for any ball ( )rxB ,0  and for all  ( ) ( )nloc

p

nloc

p RLRLf
m

 ....
1


. 
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Proof. Let  mpp ,...,1 1  and .1...11 1 nppq m −++=  For arbitrary 

,0
nRx    set   ( )rxBB ,0=  for the ball centered at   0x  and of radius r ,  

( )rxBB 2,2 0= . We represent  ( )mfff ,...,1=


 as  

( )
.,...,1,,

2,2

00 mjfffffff
BjjBjjjjj C ===+=               (8) 

Then we split  ( )( )xfT m


,    as following , 

( )( ) ( )( ) ( )( ),,...,,...,
,...,

1,

'00

1,0,

1

1+
m

m xffTxffTcxfT mmmmm








 

where     ,0,...,1 m  and each term of   '
contains at least 0i . Then, 

( )
( )( )

( )
( )( )

( )
( )( )

.

,...,

,
,...,

1,

'

,

0

,
,

,

1

1

III

ffTfTfT

rxBL

mm
rxBL

m
rxBL

m

p
m

m

pp

+

+ 








 

For  I , by the boundedness of   mT , on product  pL  spaces, we have, 

 

Taking into account that 

 ( )( ) ( )( ) midtftrf
txBLir

p

n

p

n

rxBLi
ip

i
ii

i

ip
,......,1,

,2

1

˜2,
= 


−−− 

 

we get 

                 

(9) 

 

 

For  II , first we consider the case ==== m .......21  . 

When  ryzryx ii 2, −− , we have ,
2

3

2

1
iii yzyxyz −−− and 

therefore  

( )
( )( )

( )
( ) ( ) ( )( )

==


m

i
rxBLi

m

i
RL

i
RL

m
rxBL

m
ip

n

ip
n

pp

fffTfT
1

2,
1

˜

0

˜

0

,
,

0

, .




( )
( )( ) ( )( )

.
1

,2

1

˜,

0

, 
=

 −−


m

i
txBLi

r

p

n

q

n

rxBL
m dtftrfT

ip

i
i

q
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( )
( )( )

( ) ( )

( )( )( )
( )( )

( ) ( )

( )( )( ) ( )

( ) .

,...,

...

,...,

...

1
)2,(˜

),(
2,

1

11

˜

,

2,
1

11

,
,

iii

nm

i
rxB

i

q

n

RLrxB
rxB mn

m

mm

rxBL

rxB mn

m

mm

rxBL
m

dyyfyxr

yd
yxyx

yfyf

yd
yzyz

yfyf
fT

i

C

n
q

mC

q

mC
q

−

=

−

−









−

−−


−−













 

From inequality ( )9.5  in  10 , for any  1p  we have 

( )
( )( )

,
,2

1

˜)2,(
dtftdyyfyx

txBLr

p

n
n

rxB p
C 

 −−−

−


                                  (10) 

so we have    

( )
( )( ) ( )( )

.
,

1

1
˜,

, dtftrfT
txBLi

r

p

nm

i

q

n

rxBL
m

ip

i
i

q

 −−

=

 





 

Finally, for the case that  0...21 ==== jljj   for some 

   mjlj ,..,1,...,1   where  ml 1  , we only consider the case only   01 =  

since the other ones follow in analogous way. 

Choose a series positive numbers  mqqq ,...,21,   which satisfy  

( )minqp iii ,...,111 ==−    such that    qq
m

i

i 11
1

=
=

, we have 

( )
( )( )

( )
( )( )

( )
( )

( )( )

( )( )

( )
( ) ( )n

iq
C

p

iq

C iq

q

RLrxB

m

i
rxB

in

i

ii

rxBL

m

i
rxBL

rxB
in

i

ii

rxBL
m

rxBL
mm

dy
yx

yf
f

dy
yx

yf
fT

fffT

),(

2
2,,1

˜

2
,

2,,

0

1,
˜

,
2

0

1,

1

1

,....,,








 

 

=
−

=
−



−


−
  

             

( )( ) ( )( )

( )( )
.

1
,

1

2
,2

1

,1
2

1

˜ 1



 

=

 −−

=

 −− −−−





m

i
txBLi

r

p

n

q

n

m

i
txBLi

r

p

n

q

n

txBLr

p

n

p

n

dtftr

dtftrdtftr

ip

i
i

ip

i
i

i

p

i
ii

i
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For the proof of inequality (7) , pay attention to the fact that mI ,  is 

bounded from ( ) ( )n

p

n

p RLRL
m

...
1

  to  ( )n

q RWL  for at least one ip  equals one 

if ,11
1

nqp
m

i ii  =
=−  then by a similar argument above can we easily prove 

inequality  (7). 

So far, the proof of Theorem 2.2 has been finished. 

Now we give the boundedness of multilinear fractional integral on product 

generalized Morrey spaces. 

Theorem 2.3.  Let   mpp ,...,1 1 ,  mn0  with   

nppq m −++= 1...11 1  and  
=

=
m

i

i

1

   where each  i  satisfies  

i
i

p

n
0 . Let also ( ) qppm 

11
...,,...,1     satisfies the 

condition 

( )
( ).,

,inf

˜1
1

rxdt

t

ssxessm

i
r

q

n

p

n

i
st

i

i





=



+

                       (11) 

Let also  mT , be a multi-sublinear operator which satisfies the condition (1) and 

bounded from ( ) ( )n

p

n

p RLRL
m

 ...
1

  to ( )n

q RL   for  ,,...,1,1 mipi =  and 

bounded from ( ) ( )n

p

n

p RLRL
m

 ...
1

 to ( )n

q RWL   for .,..,1,1 mipi =  Then 

the operator mT ,  is bounded from product space ( ) ( )n

p

n

p RMRM
mm  ,, ...

11
  

to ( )n

q RM ,  for mipi ,...,1,1 =  and from product space  

( ) ( )n

p

n

p RMRM
mm  ,, ...

11
  to  ( )n

q RWM , for at least one ip  equals one. 

Proof. Let   mpp ,..,1 1  and  ( ) ( ).... ,, 11

n

p

n

p RMRMf
mm  


 By 

Theorems 2.1 and 2.2 we have 

( ) ( )
( )( )

( )
( )( )

.,sup

,sup

1 1
,

1

0,˜

1
,

1
1

0,˜
,

,

,

 



= =

−



=

 −−
−



=



m

i

m

i
MirxBLi

p

q

i
rRx

m

i
txBLi

r

q

n

rRxM
m

iipip

i

i

n

ip

i

nq

ffrrx

dtftrxfT











 

When ( ) ,,..,11 mipi ==  the proof is similar and we omit the details 

here. 
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Corollary 2.1.   12   Let   mpp ,...,1 1 , mn0  with 

...11 1 += pq npm −+1  and 
=

=
m

i

i

1

  where each i  satisfies 

i

i
p

n
0 . Let also  ( ) qppm 

11
...,,..,1    satisfies  the 

condition (11). 

Then the operators mI , and  mM ,  are bounded from product space 

( ) ( )n

p

n

p RMRM
mm  ,, ...

11
   to ( )n

q RM ,  for mipi ,...,1,1 =  and from 

product space  ( ) ( )n

p

n

p RMRM
mm  ,, ...

11
   to ( )n

q RWM ,  for at least one ip  

equals one. 
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