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Abstract. The objective of this paper is to perform a computational analysis of an existing 

Monte Carlo based algorithm to solve initial value problem of ordinary differential 

equations (ODEs). Firstly the problems associated with the existing algorithm have been 

rectified by suggesting a new elaborate algorithm. Then the new algorithm has been applied 

to solve different types of ODEs including simple, explicit coupled, implicit and coupled 

system of first order ODEs. Furthermore the same has also been implemented to known 

physical systems such as Van der Pol equation and SIR epidemic model. The limitations of 

proposed algorithm have also been identified by applying Lipschitz continuity check for an 

exemplary ODE. Finally it has been demonstrated that it still very difficult to propose a 

computationally efficient algorithm to solve ODEs with considerable accuracy using Monte 

Carlo method. 
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1. Introduction  

 

Differential equations play a prominent role in engineering, physics, economics, 

and other disciplines. An ordinary differential equation (ODE) is a differential 

equation in which the unknown variable is a function of a single independent 

variable. The traditional methods used to solve Initial Value Problem (IVP) ODEs 

are Euler's method, backward Euler's method, Runge-Kutta (RK) methods, multi-

step method, and multi-value methods [6] etc. Although these methods can get 

different variation in their results, they are based on classical mathematical 

theories. 

Traditionally Monte Carlo (MC) methods have been used to solve partial 

differential equations (PDEs) but the idea to solve the ODEs was suggested by Wei 

Zhong and Zhou Tian [12]. The idea presented in this paper would have been a 

great theoretical break through if it had worked efficiently with lower 

computational complexity. Unfortunately their method had serious limitations to be 

presented in next section. Similar ideas are also available in literature but they have 

not been documented as a paper, at least according to our information. A possible 

reason may be higher associated computational cost. 
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In this research paper an effort had made to present a more accurate and 

elaborate general MC algorithm to solve ODEs whereas the algorithm in [12] lacks 

such ability. The proposed algorithm was applied to various types of system of 

ODEs; the results obtained were considerably accurate. 

In order to explain the algorithm and its results, the paper is divided into 

following sections. In section 2, related work is discussed and in section 3 the 

extended concepts of Monte Carlo integration to be used in next section are 

elaborated. These concepts are usually not discussed in elementary texts. In section 

5 Computational analysis of the proposed MC algorithm has been carried out to 

show that an efficient algorithm is still awaited in scientific community. Finally in 

section 6, the paper has been concluded. 
 

2. Related work 

 

While writing this paper we were lead by eye catcher idea presented by Wei 

Zhong and Zhou Tian [12]. Last year an attempt was made to solve SIR epidemic 

model using their idea, but it was in vain to catch their thought. It is believed the 

method suggested by Wei Zhong and Zhou Tian [12] has serious limitations as 

below: 

1. The output results are always zero, when the initial condition vector or 

resultant vectors of any intermediate iteration step are zero, it is clear from 

next iteration output equation as below.  

    1 1
S

Y j Y j
N

 
    

 
. (1) 

2. Another problem with above relation is, the output results are always zero 

when S N which is valid situation, the results shouldn't be zero.  

3. The value of judgment factor used in [2] is given by equation below: 

 
    

 

,f X j i Y j i
k x

Y j i

 
 


. (2) 

It has two serious problems as: 

a. If  Y j i becomes zero, the value of k is undefined.  

b. If  Y j i is very small, the value of k needs to be guaranteed less than 

1 which requires resizing the value of x . It may be an additional 

computational overhead. 

The algorithm suggested in this paper overcomes all these difficulties associated 

with [12]. The output results are only zero when in fact solution is zero; judgment 

factor is never undefined and doesn't require resizing  in all iteration steps. 

In this paper the methods to generate random numbers haven't been discussed, 

the interested readers can refer to [3, 5]. It has been observed that the generation 

methods can only affect the precision of the results; those should not have 

significant impact on accuracy as it is usually true for all MC methods. It may be 
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noted that, for all examples discussed in this paper uniform random generator has 

been used. 

In the next section the fundamental concepts of MC integration upon which the 

method for solving ODEs is based, has been reviewed. This however differs from 

many text books, which only discuss the cases, where the function values are 

nonnegative [10]. Probably the same concepts has been used by [12], however they 

were unable to describe it explicitly. 
 

3. Monte Carlo Integration 

 

Consider a function to be integrated as shown in Figure 1.  

 
Figure 1. A simple function to be integrated 

 

The integral is just the area under the curve. The width of the interval  b a  

times the average value of the function is also the value of the integral, that is: 

    ( )
b

average
a

I f x d x b a f b a f     . (3) 

So if we had some independent way of calculating the average value of the 

integrand, then the integral could be evaluated. That is where the random numbers 

can be used. Imagine that we have a list of random numbers, ix  uniformly 

distributed between a  and b . To calculate the function average, we simply evaluate 

( )f x  at each of the randomly selected points, and divide by the number of points: 

  
1

1 N

iN
i

f f x
N 

  . (4) 

As the number of points used in calculating the average increases, 
N

f

approaches the true average value f . Therefore, as a numerical approximation 

could be written as: 

  
 

 
1

Nb

i
a

i

b a
f x d x f x

N 


  . (5) 

Alternatively, we can look at this so-called Monte Carlo integration method in 

the following way: 

To integrate the function  f x over the interval  ,a b we can: 
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1. Find some value M such that  f x M  over the interval  ,a b  

2. Select a random number x  from a uniform distribution over the interval 

 ,a b  

3. Select a random number y from a uniform distribution over the interval 

 0,M  

4. Determine if  y f x  or  y f x  

5. Repeat this process N  times, keeping track of the number of times 

 y f x  or under the curve (= successes); call the total number of 

successes S. 

 
 

 

Area under curve

Total area inside rectangle

b

a
f x dxS

N M b a
 




. (6) 

The rectangle mentioned in above equitation is shown in Figure 2. 
 

 
Figure 2. A bounded function below M  

 
After a number of trials, the value of the integral could be calculated from the 

above formula 

    
b

a

S
f x dx M b a

N
  . (7) 

Think about throwing darts and counting the number of darts that land in the 

area representing the integral. The above method will only works if everywhere 

over the range of integration the integrand is greater than or equal to zero. Suppose, 

in fact, that the function  f x  was not always greater than zero in the interval 

 ,a b as shown in Figure 3. The Monte Carlo integration method can be modified to 

handle such cases, i.e., fix the problem with  f x  possibly being less than zero as 

follows. 
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Figure 3. A function bounded below and above 

 

To integrate the function  f x  over the interval  ,a b  we can: 

1. Find some value M such that  f x M  over the interval  ,a b  

2. Find some R such that  f x R   over the interval  ,a b  

3. Select a random number x  from a uniform distribution over the interval 

 ,a b  

4. Select a random number y from a uniform distribution over the interval 

 ,R M  

5. Determine if  y f x or  y f x  

6. Repeat this process N times, keeping track of the number of times  y f x

or under the curve (= successes); call the total number of successes S . 

The estimated probability of success is then 

 

  

Area under curve

Total area inside rectangle

b

a
f xS

N M R b a
 

 


 

     
b

a

S
f x dx M R b a

N
   . (8) 

This must now be corrected for the fact that the line y R   has been used as 

the baseline for the integral instead of the line 0y  . This is accomplished by 

subtracting the rectangular area  R b a . The final integral is then: 

       
b

a

S
f x d x M R b a R b a

N
     . (9) 

According to our information most of the text books discussing Monte Carlo 

integration methods talk about the former cases where integrand function has 

positive upper bound, the latter case has not been discussed explicitly. However 

while implementing (9) it was observed that the combined use of M and R affected 

the precision of the final results. So for the negative bound we just use (7) as: 

    
b

a

S
f x dx R b a

N
   . (10) 
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In these simulations the random number were just scaled in  ,0R . The 

advantage of using (7) and (10) separately and then adding the results improves the 

precision of final result. 

 

4. Numerical Examples 

 

In the following section different types of ODEs including simple, explicit 

coupled, implicit and coupled system of first order ODEs has been solved. While 

solving these examples a typical value of step size = 0.001 and the random number 

count = 100,000 were used. 

4.1. Simple ODEs 

We know how to solve integration problems using MC methods [8]. We desire 

to be able to solve the differential equation which is same as estimate functionals of 

the function that solves a given equation. Traditional solution is to convert them 

into integral equations and apply the MC integration rules to them. Consider a 

simple example to find the value of (4)f , given the differential equation and 

boundary condition: 

 ( ) 2 , (0) 4xd
f x e f

dx
  . (11) 

It can be integrated from 0 ( )the known value  to the desired value to get: 

 

4 4

0 0

4

0

( ) 2

(4) (0) 2

x

x

d
f x dx e dx

dx

f f e dx



 

 



 

 
4

0
(4) 4 2 xf e dx   . (12) 

The definite integral on right side of (12) may be evaluated using any crude or 

improved MC integration schemes with suitable probability distributions functions 

(PDFs) [3, 5]. 

4.2. Explicit Coupled ODEs 

In case of coupled equation set, the principles are same, but more care is needed 

in these: 

1. Putting in multiple boundary conditions. 

2. Keeping up with multiple sampled variables (each equation will have one) 

3. Most tricky is realizing and adapting to changing limits on the integrals 

(after the first). 

4. Much more difficult to optimize the choice of the probability PDFs used. 

Consider another example of second order differential equation to find the value 

of (2)f , given the differential equation and boundary condition: 

 
2

4

2
( ) , (0) 1, (0) 2

d
f x x f f

dx
   . (13) 
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In order to make it fit the category, this equation can be re-written as the linked 

set: 

 4( ) , (0) 2
d

g x x g
dx

  . (14) 

 ( ) ( ), (0) 1
d

f x g x f
dx

  . (15) 

Applying the method to the (15) first, it is transformed it into an integral 

equation for the value at 2x  : 

 
2

0
(2) 1 ( )f g x dx   . (16) 

Using MC integration approximation, we get: 

 
ˆ( )

ˆ(2) 1 0 2
ˆ( )

 f

g x
f w where x

x
     . (17) 

How to get the ˆ( )g x ? The answer is, it can be estimated from the other equation 

(14). Applying this method to the equation (14), first, it is transformed it into an 

integral equation for the value at ˆx x  

 
4

ˆ
4

0

ˆ
ˆ ˆ ˆ( ) 2 2 0

ˆ( )

x

g

u
g x u du w where u x

u
       . (18) 

The resulting procedure is as: 

1. Choose a value of ˆ (0,4)x  using ˆ
ˆ( )x x  

2. Choose a value of ˆ ˆ(0, )u x  using ˆ
ˆ( )u u  

3. Score: 

 

4ˆ
2

ˆ( )
(2) 1 1

ˆ ˆ( ) ( )

g

f

u

wu
f w

x x



 



     . (19) 

Equation (13) was solved using the above procedure and the results are given in 

Table 1. The exact value of (2) 7.13333f   is up to five decimal places. From the 

Table 1 it can be observed that the accuracy of the results improves with increase 

in the count of random numbers ( )N  used in simulation. 

Table 1. Results of various trials for equation (13) 

N 100 500 1000 10000 

(2)f - Trial 1 6.9949 7.2939 7.2440 7.1278 

(2)f - Trial 2 7.2821  7.2179 6.9121 7.1201 

(2)f - Trial 3 6.5576  6.8734 7.2528 7.1490 

Average 6.9448  7.1284 7.1363 7.1323 

 

4.3. Implicit ODEs 

In the following section the proposed algorithm to solve implicit function ODEs 

has been presented, which are generally solved by numerical techniques, and then 

its implementation for various types of ODEs has been discussed. 
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4.3.1. Monte Carlo based proposed algorithm 

The major problem in case of implicit functions is initially estimating the value 

of M and R . Here a general algorithm for implicit ODEs is proposed, then it is 

suggested how to predict initial values of M and R . 
 

 
 

Depending upon the initial conditions of ODE the values of M and R needs to 

be justified accordingly. If values of M and R for ( , )F X Y  are not known then 

these values can be predicted by initializing M and R  to zero, executing the 

Algorithm 2, and between lines 6 and 7 setting the values of M and R  equal to  the 

maximum and minimum value of ( )JF judgement factor  respectively.  

4.3.2. Single Implicit ODEs 

In this section three exemplary first order implicit ODES along with their 

analytical solution has been discussed.  
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Example 1: The example of first order implicit stiff ODE has been taken from 

[1] to demonstrate forward Euler's method as: 

 1000 3000 2000 ; (0) 0tdy
y e y

dt

     . (20) 

The analytical solution of this equation is as given below: 

 10003 0.998 2.002t ty e e    . (21) 

Monte Carlo based proposed algorithm was applied to equation (20) and the 

results are shown in Figure 4 and listed in Table 2. 
 

 
Figure 4. Comparison of numerical and exact solutions of equation (20) 

 

From Figure 4 and the Table 2 It is clear that the results are very consistent with 

analytical solution. While close view of error in Figure 5 indicates that results 

having error of order 10-4 is acceptable to some extent but still RK4 method is more 

accurate. 

 
Figure 5. Error comparison of proposed and RK4 methods for equation (20) 
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Table 2. Results of two sample trials for equation (20) 

 

t 0.0 0.2 0.4 0.8 1.0 

Analytical Solution Results 

( )y t  0 1.3609 1.6580 2.1004 2.2635 

Proposed Algorithm Result after 1st attempt 

( )y t  0 1.3623 1.6592 2.1011 2.2639 

Proposed Algorithm Result after 2nd attempt 

( )y t  0 1.3624 1.6593 2.1012 2.2642 

 

 
Figure 6. Comparison of numerical and exact solutions of equation (22) 

 

Example 2: Another example of first order implicit stiff ODE has been taken 

from [11] to demonstrate the usefulness of the backward Euler's method as: 

 1000 sin( ) ; (0) 1/100001u u t u      . (22) 

This has a smooth solution as: 

 
1000sin( ) cos( )

1000001

t t
u


 . (23) 

Again Monte Carlo based proposed algorithm was applied to equation (22) and the 

results are shown in Figure 6 and listed in Table 3. 
 

Table 3. Results of two sample trials for equation (22) 

t 0.0 0.2 0.4 0.8 1.0 

Analytical Solution Results 

( )u t  -1e-6  1.977e-4 3.885e-4 7.166e-4 8.409e-4 

Proposed Algorithm Result after 1st attempt 

( )u t  -1e-6  1.986e-4 3.894e-4 7.173e-4 8.414e-4 

Proposed Algorithm Result after 2nd attempt 

( )u t  -1e-6  1.986e-4 3.894e-4 7.173e-4 8.414e-4 

From Figure 6 and the Table 3 it can be observed the results are very consistent 

with analytical solution. 
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Example 3: This is 3rd  example of single stiff ODE taken from [6] to illustrate 

both forward and backward Euler's method as: 

 ' 100 100 101 ; (0) 1y y t y     . (24) 

The analytical solution of this equation is as given below: 

 ( ) 1y t t  . (25) 

Again Monte Carlo based proposed algorithm was applied to equation (24) and the 

results are shown in Figure 7 and listed in Table 4. 

 
Figure 7. Comparison of numerical and exact solutions of equation (24) 

 

From Figure 7 and the Table 4 it can be seen that results are very reliable as 

compared to analytical solution. 
 

Table 4. Results of two sample trials for equation (24) 

t 0 20 40 80 100 

Analytical Solution Results 

( )y t  0 21  41 81 101.00 

Proposed Algorithm Result after 1st attempt 

( )y t  0 21.01  41.01 81.01 101.01 

Proposed Algorithm Result after 2nd attempt 

( )y t  0 21.03  41.03 81.03 101.03 

 

Hence in this section it has been demonstrated that the proposed algorithm can 

equivalently be used instead of both forward and backward Euler's methods. So it 

depicts that the proposed algorithm does not suffer instability problem associated 

with forward Euler's method. 

 

4.3.3. Two Coupled First Order ODEs 

The example is a set of two coupled ODEs taken from [12] as below: 

 2 ; (0) 1.0
dy

y z y
dx

   . (26) 
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 4 3 ; (0) 0.0
dz

y z z
dx

   . (27) 

The analytical solutions are: 

 51
( ) ( 2 )

3

x xy x e e   . (28) 

 52
( ) ( )

3

x xz x e e   . (29) 

 

Monte Carlo based proposed algorithm was applied to equation (26) and (27) 

and the results are shown in Figure 8 and listed in Table 5. 

 
Figure 8. Comparison of numerical and exact solutions of equation (26) and (27) 

 

Table 5. Results of two sample trials for equation (26) and (27) 

x 0.0 0.2 0.4 0.8 1.0 

Analytical Solution Results 

( )y x  1 1.4519  2.9099 18.4989 49.7163 

( )z x  0 1.2664  4.4792 36.0992 98.6969 

Proposed Algorithm Result after 1st attempt 

( )y x  1 1.4568  2.9321 18.7541 50.3846 

( )z x  0 1.2789  4.5246 36.6118 99.0358 

Proposed Algorithm Result after 2nd attempt 

( )y x  1 1.4614  2.9322 18.5024 49.0638 

( )z x  0 1.2902  4.5294 36.1098 97.3981 

 

From Figure 8 and the Table 5 it is clear that results are very reliable as 

compared to analytical solution. 

4.3.4. Implicit 2nd order ODE 

The example is taken from [2] with analytical solution provided as below: 

 2 0 ; (0) 1 , (0) 2yy y y y      . (30) 
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The analytical solution is: 

 2( ) xy x e . (31) 

Monte Carlo based proposed algorithm was applied to equation (30) and the 

results are shown in Figure 9 and listed in Table 6. 

 
Figure 9. Comparison of numerical and analytical solutions of equation (30) 

 

Table 6. Results of two sample trials for equation (30) 

x 0 0.2 0.4 0.8 1.0 

Analytical Solution Results 

( )y x  1  1.4918 2.2255 4.9530 7.3891 

Proposed Algorithm Result after 1st attempt 

( )y x  1  1.4884 2.2169 4.9223 7.3425 

Proposed Algorithm Result after 2nd attempt 

( )y x  1  1.4958 2.2314 4.9524 7.3831 

 

From Figure 9 and the Table 6 above it can be observed that the results are very 

consistent with analytical solution. 

4.3.5. Three Coupled first order ODEs 

In this section two examples of three coupled first order ODEs along with their 

analytical or numerical solution are presented. 

Example 1: The first example has been taken from [4], is for solving the 

homogeneous, linear systems with constant coefficients. This is an initial value 

problem defined as: 

 

1 1 2 3 1

2 1 2 3 2

3 1 2 3 3

8 5 10 ; (0) 2

2   2  ; (0) 2

4 4 6 ; (0) 2.

x x x x x

x x x x x

x x x x x

    

    

     

 (32) 

The analytical solutions are: 
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2 3

1

2 3

2

2 2

3 .

( ) 6 4

( ) 6 4

( ) 6 3

t t

t t

t t

x t e e

x t e e

x t e e





 

 

  

 (33) 

Monte Carlo based proposed algorithm was applied to set of equations (32) and the 

results are shown in Figure 10 and listed in Table 7. 

 
Figure 10. Comparison of numerical and exact solutions of equation (32) 

 

From Figure 10 and the Table 7 it can be seen that the results are very reliable as 

compared to analytical solution. While having a precise view in Figure 11 we see 

that results are acceptable to some extent but still RK4 method is more accurate. 
 

 
Figure 11. Error comparison of proposed and RK4 methods for equation (32) 

 

Table 7. Results of two sample trials for equation (32) 

t 0.0 0.2 0.4 0.8 1.0 

Analytical Solution Results 

1( )x t
 2  -3.2666 -10.5845 -42.8813 -79.5301 

2 ( )x t
 2 1.6625 0.0728 -14.3745 -36.0078 

3 ( )x t
 -3 0.4536 3.9806 13.6477 21.3552 
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Proposed Algorithm Result after 1st attempt 

1( )x t
 

2  -3.2708  -10.5806 -42.9768 -79.6706 

2 ( )x t
 

2 1.6563 0.0643 -14.4306 -36.0964 

3 ( )x t
 

-3 0.4624  3.9870 13.6640 21.3798 

Proposed Algorithm Result after 2nd attempt 

1( )x t
 

2  3.2786  -10.6364 -43.1725 -79.9850 

2 ( )x t
 

2 1.6559  0.0473 -14.5422 -36.2975 

3 ( )x t
 

-3 0.4571  3.9873 13.7005 21.4350 

Example 2: The second example has been taken from [9], explaining the 

reliable Rosenbrock methods used to solve a stiff ODE system. This is an initial 

value problem defined as: 

 

1 1 1 2 1

2 2 3 2

3 1 1 3 2 3 3

0.013 1000 ;  (0) 1

2500 ;  (0) 1

0.013 1000 2500 ;  (0) 2.

y y x y y

y y y y

y y y y y y y

    

   

     

 (34) 

No analytical solutions were available, the built in routine ode45 (4th, 5th order 

RK methods) available from MATLAB was used for comparison. Monte Carlo 

based proposed algorithm was applied to set of equations (34) and the results are 

shown in Figure 12 and listed in Table 8. 

 
Figure 12. Comparison of numerical solutions of equation (34) 

 

Table 8. Results of two sample trials for equation (34) 

t 0 2 4 8 10 

Analytical Solution Results 

1( )y t  1 0.9815  0.9632 0.9270 0.9092 

2 ( )y t  1 1.0185  1.0368 -14.3745 1.0908 

3 ( )y t  0 -3.86e-6  -4.16e-6 -3.29e-6 -2.71e-6 

Proposed Algorithm Result after 1st attempt 

1( )y t  1 0.9815  0.9631 0.9270 0.9093 

2 ( )y t  1 1.0186  1.0370 1.0732 1.0911 

3 ( )y t  0 -3.61e-6  -3.52e-6 -3.34e-6 -3.25e-6 
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Proposed Algorithm Result after 2nd attempt 

1( )y t  1 0.9815  0.9633 0.9272 0.9095 

2 ( )y t  1 1.0185  1.0368 1.0728 1.093 

3 ( )y t  0 -3.63e-6  -3.53e-6 -3.35e-6 -3.26e-6 

 

From Figure 12 and the Table 8 it can be seen that the results are very reliable as 

compared to ode45 solution 
 

4.3.6. Practical Systems 

In this section three exemplary practical systems involving along with their 

numerical solution has been presented. 

Van der Pol Equation: The Van der Pol equation is a model of an electronic 

circuit that arose back in the days of vacuum tubes [1]. 

 2( 1) 0 ; 1 , (0) 2 , (0) 1y y y y y y          . (35) 

Monte Carlo based proposed algorithm was applied to equation (35) with given 

initial conditions and the results are depicted in Figure 13, and listed in Table 9. 

 
Figure 13. Comparison of numerical solutions of equation (35) 

 

Table 9. Results of two sample trials for equation (35) 

t 0.0 0.1 0.2 0.4 0.5 

ODE45 Results 

( )y t  2  2.1061 2.2308 2.6138 2.9854 

Proposed Algorithm Result after 1st attempt 

( )y t  2  2.1065 2.2315 2.6137 2.9831 

Proposed Algorithm Result after 2nd attempt 

( )y t  2  2.1062 2.2309 2.6153 2.9865 

 

From Figure 13 and the Table 9 above it can be observed that the results are 

very reliable as compared to ode45 solution. 
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Figure 14. Comparison of numerical solutions of equation (36) 

 

 Predator – prey model: Consider the Lotka-Volterra predator-prey [1] with 

initial conditions as below: 

 
( ) ;  1.2 ,  0.6 ,  (0) 2

( ) ;  0.8 ,  0.3 ,  (0) 1.

x t ax bxy a b x

y t cy dxy c d y

     

      
 (36) 

Here ( )x t  and ( )y t  are the prey and predator population sizes respectively at 

time t , and , , ,a b c d  are biologically determined parameters. Monte Carlo based 

proposed algorithm was applied to equation (36) with given initial conditions and 

the results are depicted in Figure 14, and listed in Table 10. 

From Figure 14 and the Table 10 it is clear that the results are very reliable as 

compared to ode45 solution. 

 
 

Table 10. Results of two sample trials for equation (36) 

t 0 2 4 8 10 

ODE45 Results 

( )x t  2  0.1828 0.0089 0.0098 0.0378 

( )y t  1  5.7078 3.3796 1.0091 0.5964 

Proposed Algorithm Result after 1st attempt 

( )x t  2  0.1826 0.0074 0.0081 0.0334 

( )y t  1  5.7657 3.3868 1.0071 0.5884 

Proposed Algorithm Result after 2nd attempt 

( )x t  2  0.1811 0.0088 0.0092 0.0337 

( )y t  1  5.7624 3.4129 1.0181 0.6032 
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Figure 15. Comparison of numerical solutions of equation (37) 

 

The SIR Epidemic model: The SIR model for epidemic dispersion [7] given by 

the following equations with initial conditions described as. 

 

( ) ; (0) 100

( ) ; (0) 10

( ) ; (0) 0

0.1 , 0.01 , 0.

S t SI R S

I t I SI I

R t R I R

 

 

 

  

    

    

    

  

 (37) 

Monte Carlo based proposed algorithm to equation (37) with given initial 

conditions and the results are depicted in Figure 15, and listed in Table 11. 
 

Table 11. Results of two sample trials for equation (37) 

t 0 1 10 20 70 

ODE45 Results 

( )S t  100  84.496 0.307 0.012 0.002 

( )I t  10  24.701 51.865 19.431 0.130 

( )R t  0  1.803 57.827 90.557 109.868 

Proposed Algorithm Result after 1st attempt 

( )S t  100  84.006 0.238 0.015 0.007 

( )I t  10  22.498 51.986 19.211 0.137 

( )R t  0  1.496 57.539 90.648 109.846 

Proposed Algorithm Result after 2nd attempt 

( )S t  100  84.071 0.297 0.012 0.006 

( )I t  10  24.208 52.468 19.519 0.158 

( )R t  0  1.721 57.555 90.578 109.915 

 

From Figure 15 and the Table 11 it can be seen that the results are very reliable 

as compared to ode45 solution.  
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Figure 16. Comparison of numerical solutions of equation (38) 

 

4.3.7. Unsolvable Implicit ODEs 

In this section two exemplary problems are discussed. 

Lorenz Problem: The ODEs of Lorenz problem used for weather prediction 

belong to a class referred to as chaotic; they produce wildly different results when 

their initial conditions are changed infinitesimally. In other words, accurate 

weather prediction depends crucially on the accuracy of the measurements of initial 

conditions. It is known to have solutions that are potentially poorly conditioned. 

The set of ODEs used in our simulation has been taken from [2] are as: 

 

1 2 1 1

2 1 1 2 2

3 1 2 2 3

10( ) ; (0) 15

(28 ) ; (0) 15

8
; (0) 36.

3

x x x x

x x x x x

x x x x x

   

    

   

 (38) 

Monte Carlo based proposed algorithm was applied to equation (38) with given 

initial conditions and the results are depicted in Figure 16, and listed in Table 12. 

 
Table 12. Results of two sample trials for equation (38) 

t 0 2 4 8 10 

Analytical Solution Results 

1( )x t
 15  3.5803 -4.1650 -3.4768 -5.4116 

2 ( )x t
 15  5.5524 0.2592 -4.0746 2.2911 

3 ( )x t
 36  15.5830 28.3352 19.7510 32.3058 

Proposed Algorithm Result after 1st attempt 

1( )x t
 15  2.9842 8.4022 -1.6157 -11.8506 

2 ( )x t
 15  4.7407 3.4533 -2.8473 -8.1210 

3 ( )x t
 36  14.9478 32.3746 17.7672 35.1122 

Proposed Algorithm Result after 2nd attempt 

1( )x t
 15  3.1827 4.3548 7.2789 0.0427 

2 ( )x t
 15  5.1893 0.5714 11.3518 -4.4594 

3 ( )x t
 36  14.2940 27.7014 17.9530 26.7454 
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From Figure 16, it can be observed that the results are unreliable as compared to 

ode45 solution because the proposed algorithm behaves like Euler's method 

(similarities to be discussed in preceding section) with constant slope diverging 

away from the solution. The Table 12 lists two sample trials for set of equations 

(38) which illustrate the inaccuracy of results we obtain. 

Lipschitz Continuity Check: Here an exemplary problem has been discussed to 

check the lipschitz continuity where the proposed algorithm has been used solve a 

very simple ODE as: 

 2 ; (0) 1 [0,2]y y y t in    . (39) 

The analytical solution is: 

 
1

( )
1

y t
t




. (40) 

This solution goes to infinity as t approaches 1 as shown in Figure 17.  Let us 

consider the solution in the interval 0 2t  ,10 10y  .It can be seen that 

Lipschitz constant=20, but  solution is not guaranteed on the entire interval [0,2] . 

Furthermore Euler's Method and the proposed algorithms have been applied to 

equation (39), the results are shown in Figure 17, 

 
Figure 17. Comparison of numerical and analytical solutions of equation (39) 

 

It can be observed soon the Euler's method blows as function slope increases 

rapidly at 1t  . But the proposed algorithm is not affected because it didn't detect 

the singularity at 1t  , which is a usual attribute of MC methods. The ratio of S  to 

N  has been shown in Figure 18. 
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Figure 18. Plot of /S N  ration in the interval  0 2t   

 

We observe at time 1, ,t S N   the next iteration solution 
1kY 
 becomes. 

 
1k kY Y M X    . (41) 

The function values increase with M being a constant slope. This trend is very 

clear from Figure 18, again it a characteristic of MC method, it is predicting a 

solution even if it inaccurate. 
 

5. Computational analysis 

 

As stated earlier while trying to implement [12] for SIR model, the associated 

problems were rectified giving rise to a theoretically sound algorithm 2, however it 

needs an in-depth analysis of the proposed algorithm. The proposed relations for 

the output are: 

 1k kY Y M X
N

   
S

. (42) 

or 

 1k kY Y R X
N

   
S

. (43) 

However if values of M  and R  for ( , )F X Y  are not known then these values 

can be predicted as stated in section 4.3.1. Now consider the standard Euler's 

method relation: 

 1 ( , )k kY Y F X Y X    . (44) 

As in Euler's method the function ( , )F X Y  is replaced with M or R
N N


S S

.Now 

if S N  then ( , )F X Y M or R  . Hence the algorithm is kind of Euler's method 

approximation where M  or R  are constants is substituted for slope of the 

function. 

Furthermore computational aspects of the proposed algorithm have been 

analyzed by comparing it to some other standard ODE solvers. The proposed 
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algorithm has been analyzed using a number of set of ODEs; however the results 

presented here are for the system of ODEs given by equation (26) and (27), as 

given in [12] : 

5.1. Variation of Random Number Count (N) 

In all Monte Carlo simulation it is traditional to observe the effect of change in

N , the following subsection presents its impact on computational time and mean 

square error. Here the step size has been fixed at 0.001. 

 
Figure 19. Random number count versus computational time 

5.1.1. Computational time 

Here in the following diagram the quantity of random numbers used has been 

varied and the execution time of the algorithm has been measured, the results are 

shown in Figure 19. It is clear as the random number count used in simulation is 

increased; the computational time is also increased. 

 

5.1.2. Mean Square Error 

Here in the following diagram the quantity of random numbers used has been 

varied and the mean square error has been computed for the proposed algorithm, 

the results are shown in Figure 20.  

 
Figure 20. Random number count versus  mean square error 

 

It is clear as the random number count used in simulation is increased the mean 

square is decreased. This is also a normal trait of all MC methods. 
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Figure 21. Step Size versus computational time 

 
5.2. Change of step size 

The step size is very important parameter for measuring the performance of 

ODEs algorithm. Smaller step size means slower computation, but perhaps the 

right precision and vice versa. In the following section its effects on computational 

time and mean square have been analyzed. Here a fix value of N = 100,000 is used; 

5.2.1. Computational time 

Here in the following diagram the step sizes used have been varied and the 

execution time of various ODE algorithms has been measured, the results are 

shown in Figure 21. 

It can be seen that large step size means faster computation, but perhaps not the 

right precision. However the proposed algorithms have much higher computational 

time than even the most basic Euler's Method algorithm. 

5.2.2. Mean Square Error 

Here in the following diagram the step sizes used have been varied and the 

mean square error has been computed for the proposed algorithm, the results are 

shown in Figure 22. 

It is general observation that increasing the step size may in fact make errors 

worse. It can be seen mean square error of the proposed algorithm follows same 

pattern as basic Euler's method. 

 

 
Figure 22. Step size versus mean square error 
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5.3. Accuracy and stability 

Most of the ODEs solved in this paper are stiff usually difficult to solve by 

using forward Euler’s method, in such cases backward Euler's method is used.  

Furthermore it was also compared to Rosenbrock method which is considered to 

more effective for stiff ODEs, where other solvers are not useful. The results had 

considerable accuracy as compared to Rosenbrock methods. It has been observed 

that the accuracy of the method depends upon the quantity of random numbers 

generated. The algorithms has always been found stable due to bounding value of 

M and R . 

 

6. Conclusion 

 

The idea presented in this paper for Monte Carlo based method to solve initial 

value problem of ODEs is mathematically based on natural extension of Monte 

Carlo integration. It is mathematically sound and lucid as compared to [12]. The 

scope of this paper is much wider as it discusses a large class of ODEs as compared 

to [12]. The limitation of the said algorithm has clearly been identified. The 

normalcies associated with proposed algorithm are as: 

1. The algorithm is less sensitive to step size however same step size was used 

in all examples for comparison with analytical and numerical solutions. 

2. Higher value of N will give higher accuracy and precision of results 

3. In the last example of Lipschitz continuity check the two points can be 

concluded in this regard. 

a. The subtle peaks and troughs will be lost by using proposed algorithm. 

b. The algorithm never fails to predict solution, even the results are 

wrong. 

These are normal features of Monte Carlo based algorithms. 

4. The algorithm is computationally more expensive than all other ODE 

solvers. 

The implementation of this algorithm is computationally more expensive than 

other available ODE solvers, but still there are a few open questions listed as: 

1. Would it be possible to use suggested algorithm to simulate the system of 

coupled ODEs in much higher dimensions, by using parallel random 

number generators? 

2.   In case of parallel implementation whether communication or 

computational factor will dominate, needs further investigation. 

It may be noted that we come across the idea of this paper from simulation to 

theory, while implementing [12]. In future our intention is strive to find the 

answers to these open questions. In our opinion, at present computational 

community needs to wait for an efficient Monte Carlo algorithm for solving ODEs, 

which may be possible in near future with emerging processor architectures. 
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Başlanğıc sərhəd şərtli adi diferensial tənliyin  

Monte-Karlo üsulu ilə həlli 

 

M.N. Akhtar, M.H. Durad, A. Ahmed 
 

XÜLASƏ 

 
Məqalədə adi diferensial tənliyin həlli üçün Monte-Karlo üsuluna əsaslanan 

alqoritm təklif edilir. Bu alqoritm birinci tərtib sadə, aşkar, qeyri-aşkar adi diferensial 

tənliklərə və tənliklər sisteminə tətbiq edilir. Sonra bu üsul Van der Pol və SİR 

epidemik və fiziki sistemlərə də tətbiq edilir. Göstərilir ki, Monte-Karlo üsulu ilə adi 

diferensial tənliklərin tələb edilən dəqiqliklə həlli ciddi çətinliklərlə bağlıdır.  

Açar sözlər: Monte-Karlo inteqrallanması, adi diferensial tənliklər, Lorens 

problemi, Van der Pol tənliyi, SİR modeli. 
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Решение обыкновенных дифференциальных уравнений с 

начальными условиями методом Монте-Карло 

 

М.Н. Актар, М.Х. Дурад, А. Ахмед 

 

РЕЗЮМЕ 

 
В статье предлагается алгоритм  базирующийся на методе Монте-Карло 

для решения обыкновенных дифференциальных уравнений. Этот алгоритм 

применяется к решению обыкновенных дифференциальных уравнений первого 

порядка простого, явного и неявного типа и систем уравнений. Далее решается 

физическое уравнение Ван дер Пола и эпидемическое СИР уравнение. 

Показывается что, решение обыкновенных дифференциальных уравнений с 

требуемой точностью представляется достаточно трудным.  

Ключевые слова: интегрирование Монте-Карло, обыкновенные 

дифференциальные уравнения, Проблема Лоренца, Уравнение Ван дер Пол, СИР 

уравнение.  


