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Abstract. An inverse boundary value problem for a third-order pseudo-hyperbolic equation
with integral condition of the first kind is investigated. To study the solvability of the
inverse problem, we first reduce the considered problem to an auxiliary problem and
prove its equivalence (in a certain sense) to the original problem. Then using the Banach
fixed point principle, the existence and uniqueness of a solution to this problem is shown.
Further, on the basis of the equivalency of these problems the existence and uniqueness
theorem for the classical solution of the inverse coefficient problem is proved for the
smaller value of time.
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1.Introduction.

There are many cases where the needs of the practice bring about the problems of
determining coefficients or the right hand side of differential equations from some
knowledge of its solutions. Such problems are called inverse boundary value
problems of mathematical physics. Inverse boundary value problems arise in
various areas of human activity such as seismology, mineral exploration, biology,
medicine, quality control in industry etc., which makes them an active field of
contemporary mathematics.

The inverse problems are favorably developing section of up-to-date
mathematics. Recently, the inverse problems are widely applied in various fields of
science. Different inverse problems for various types of partial differential
equations have been studied in many papers. First of all we note the papers of
AN.Tikhonov [1], M.M.Lavrentyev [2,3], A.M.Denisov [4], M.l.lvanchov [5] and
their followers.

Contemporary problems of natural sciences make necessary to state and
investigate qualitative new problems, the striking example of which is the class of
non-local problems for partial differential equations. Among non-local problems
we can distinguish a class of problems with integral conditions. Such conditions
appear by mathematical simulation of phenomena related to physical plasma [6],
distribution of the heat [7] process of moisture transfer in capillary simple
environments [8], with the problems of demography and mathematical biology.
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The solvability of inverse problems in certain formulations, with certain
overdetermination conditions for pseudo-hyperbolic equations, was the subject of
research in [9-12].

In this paper , using the Fourier method and the principle of contraction
mappings , the existence and uniqueness of a solution to a nonlinear inverse
boundary value problem for a pseudo - hyperbolic equation of the third order with
an integral condition of the first kind are proved .

2. Problem statement and its reduction to equivalent problem.
Lets consider for the equation

(pt+0)*u, (X, 1) —a(pt+g)u,, (x,t) — Bu,, (x,t) = at)u(x,t) + f (x,1) ey
in the domain Dy = {(x,t) 0<x<l 0<t ST}an inverse boundary problem
with initial conditions

u(x,0) =p(x), ug(x0)=w(x) (0<x<1), )
periodic condition
u(0,t) =u(Lt) (0<t<T), ®)
nonlocal integral condition
1
fu(x,t)dx=0 (0<t<T), (4)
0
and the additional conditions
u(x,,t)=h(t) (0<t<T), (5)

where p>0,0>0,a>0,>0 X, €(0,1) isa fixed numbers, f(x,t),
o(X),(x),h(t) are given functions, u(x,t), a(t)and b(t) are unknown
functions.
Definition. The pair {u(x,t),a(t)} is said to be a classical solution to the

problem (1)-(5), if the functions u(x,t) € 62’2(5T) and a(t) e C[0,T] satisfies
an Equation (1) in the region D;, the condition (2) on [0,1], and the conditions
(3)-(5) on [0, T],where

C@2(Br) = ju(x,1) : u(x,t) € C2(Dr ), U (1) C (D7)},
Theorem 1. Suppose that f (x,t) € C(D;), ¢(x) € C'[0,1],(x) € C[0,1],

1
P1)-¢'(0)=0, h(t)eC?[0,T] , h(t)=0 (0<t<T) , [ f(x,t)dx =0,
0
(0<t<T) and the compatibility conditions
1 1
[o(x)dx=0, [w(x)dx=0, (6)
0 0

#(%) =N(0), w(x,) =h'(0) (7)
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holds. Then the problem of finding a classical solution of (1)-(5) is equivalent to

the problem of determining functions u(x,t) e 62’2(5T) and a(t) eC[0,T],
satisfying equation (1), conditions (2) and (3), and the conditions

U, (0,0) =y (Lt) (O<t<T), @)
(pt+a)*h"(t) —a(pt+q)uy, (%, 1) = Bu (%, 1) =
—a(t)h(t) + f (x,,t) (O<t<T). )

Proof. Let {u(x,t),a(t)} be a classical solution of (1)-(5). By integrating both

sides of Equation (1) with respect to X from0 to 1, we find
d 21
(pt+0)° 7 00—+ Q) (U (L) ~ Ui (0.) — AUy L) ~ux (0.0) =
0

1 1
=a(t)ju(x,t)dx+jf(x,t)dx (0<t<T) . (10)
0 0
1
Taking into account that _[ f(x,t)dx=0, (0<t<T), allowing for (4),we have:
0

a(pt+q)%(ux(1,t)—uX(O,t))+,B(uX(1,t)—uX(O,t))=O(OstsT). (11)
By (2) and ¢'(2) —¢'(0) =0 we get:

Uy (10) —ux(0,0)=¢'(1) - ¢'(0)=0 . (12)
Since the problem (11), (12) has only a trivial solution, then
Uy (Lt)—uy,(0,t)=0 (0O<t<T), i.e. the condition (8) is fulfilled.

Now, from the equation (1) we find:

(pt+q) U(Xo’t) a(pt+g)uy, (X, t) — Bu, (X, 1) =

—a(t)u(xo,t)+f(xo,t) (O<t<T). (13)
Further, assuming h(t)  C?[0, T] and twice differentiating (5), we have

—u(xo,t) h'(t), u(xo,t) h"(t)(0<t<T), (14)

respectively.

From (13), by (5) and (14), we conclude that the relation (9) is fulfilled.

Now, suppose that {u(x,t),a(t)} is the solution of (1)-(3), (8),(9). Then
from (10), by means of (3) and (8), we find

2 1
(pt+q) ju(x t)dx = a(t) ju(x t)dx(0<t<T). (15)
0
By virtue of (2) and (6), it is not hard to see that
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1 1 1 1
fu(x,0)dx =[(x)dx =0, [u¢(x,0)dx = [y (x)dx=0. (16)
0 0 0 0

Since of problem (15), (16) has only a trivial solution, then

1
ju(x,t)dx= 0(0 <t< T) i.e. condition (4) is fulfilled.
0

Further, from (9), (13),we obtain:

d2

(pt+Q)2F(U(XO,t)—h(t)) =a(t)u(x,t)-h) O0<t<T) (17
respectively.

Using (2) and the compatibility conditions (8) and (9), we have
» U(%, 1) —h(0) = (%) —=h(0) =0, u,(x,,0)-h'(0) =y'(x,)-h'(0)=0 .(18)
From (17), (18), we conclude that conditions (5) are satisfied. The theorem is thus
proved.

3. Solvability of inverse boundary-value problem

Obviously, [9],

1,c0s A1 X,Sin 44 X,...,COS Ay X, SiN 4 X,... (19)
is a basis in Ly(0,1)) , where A4 =2kz (k=01,...). Since the system (26)
forms basis in L,(0,1) , it is obvious that for each solution {u(x,t),a(t)}
problems (1)-(3),(8),(9) first component u(x,t) has the form:

u(x,t) = > ug (t)cosAyx+ D upy (t)sindgx (A =27K), (20)
k=0 k=1
where

1 1
g (t) = Ju(x,t)dx , ugy (t) = 2[u(x,t)cos A xdx (k =12,...),

0 0
1
Ugk (t) = 2[u(x,t)sin 4 xdx (k =1,2,...).
0

Then, applying the formal scheme of the Fourier method, to determine the
desired coefficients Uy (t) (k=01...) , Uy (t) (k=12,...) functions u(x,t),
from (1) and (2) we obtained:

(pt+0q)’ul(t) =F,(t;u,a) (0<t<T) , (21)
(pt+a)? uff () + a(pt + Q) 22Uy () + BA2 Ui (£) =

=F (tu,a) (i=12k=12,..;0<t<T), (22)

u10(0) =10, W10(0) =v10 . (23)

Uik (0) = @ik, Uik 0) =wix (i=12k=1..),, (24)
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where
F, (t;u,a) =a(t)u, (t)+ f, (), (k=01..),

f,o(t) = j f(x,t)dx
f (t) = 2} f(x,t)cos A xdx (k=12,..),
1 i 1
oo =[000dx,  yyo=2[p(X)dx
0 0

oy = 2.1[ @(x)cos A xdX,yy, = ZTW(X) cosA4xdx (k=01...),
0 0
F2k (t) = a(t)uzk (t) + fzk (t),

f, ()= 2} f(xt)sinAxdx (k=12,.),

Do = 2}¢)(x)sin Axdx  (k=12,..), v, = 2}1//(x)sin Axdx  (k=12,...).
0 0

Now, suppose that

2

2 2

dar” | Apm 20,
p p
Solving the problem (21)-(24) gives

Uyo(0) = o+t o + | ( _(Tgfli(g);f’ 3 4z (0<t<T) . (25)

1 0 1k 0 1“2k
Uik (1) = — ,UZk{_t"‘lJ —/m{—“lJ Pik +
Yk q q
12k 1k
+ﬂ [£t+1j —(£t+1j Wik
pi\d q

te . H2k Hik

+1IF|k(r,u,a) (PHQJ _(Mj dr [(i=12), (26)
Po (pr+g)? (\P7+a Pr+q

where
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2
1 ok 1 aﬂf; ﬁlﬁ
il ]‘JZ(T*} e
2
__tfak |, |tfek | _BA

2
Yk = Mok — L 21—a2 _/Mﬁ
k = Mok —Hik =47 el -
41 p p

To determine the first component of the classical solution to the problem (1)-
(3), (8),(99 we substitute the expressions ujg(t) (k=0\1,...)

Uik (t) (1=12;k=12,...) into (20) and obtain

(t-7)Fy(z;u,) dr+
(pr+0)*

» | 1 0 M1k D H2k
+2 19— ﬂzk(—Hlj _,Ulk(_t‘”-j Pk +

k=1 7k q 9

M2k Hik

L9 (£t+1j —[EHlJ 7z

pi\d q

t _ H2K H1k

+EIF1k(T,U’62‘) (quj _(Mj dr |pcos 2 x +

Po (pr+a)” (\PT+0 pr+d

w | 1 o )k o )2k
+ 29— ﬂzk(a“rl] _,Ulk(at"'l} Pok +

t
u(x,t) =g, +t vy, +j
0

k=1|7k

H2k H1k
+ﬂ [£t+1j —(£t+1j W ok
pi\la q

t . H2k Hk
+£Isz(r,u,a) (pt+q} _( pt+qj dr |Lsin 2x o
Po (pr+q)? |\LpP7r+( pr+d

Now, using (20), from (9) we find
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a(t)=h(t)] {(pt+a)*h"@® — f (x,.1)
+icos/1kxo (a(pt"'q)ﬂ’zzkul'k (t)+ﬁﬂ'k2ulk (t)) +

+i5inﬂkxo(a(pt+Q) zkuli (t)‘*‘ﬂﬂkzuzk (t)) }' (28)

Differentiating (26) two times, we get:

k-1 ok -1
, 1
Uik (t) =— ﬂlkﬂzkE (BHlj —(BHlj @ik +
7k ajla q

0 H2k 1 0 ik —1
+ qu[aHlj —ﬂlk[a“rlj Wik +

j R (50, 2) pt+q )™ pt+g )" dr | (i=12) (29)
+ - - 1= y ’
e+ | " prq # prrg ‘

1 2 Mk —2 M2k =2
UE’k(t)=7 ﬂlkﬂZk(qJ (tak 1)( t+1j — (12K 1)( t+1j Pik +

0 0 k-1 k-1
+a 2k (12K —1)(at+lj -tk (rak 1)[qt+1j vik +

“F, (z;u,a) pt+q)*” pt+q )"
hlzu.a) i) _ ) d
+p_(|; (pr+q)° {ﬂZk(ﬂzk )[ pr+qJ Ay )(pﬂqj J 7|+

Fik (t;u,a)
+—

2
(pt+q)
By virtue of (22) and (30) we have:

a(pt+a)A2u; (£) + A%, (t) = R, (t;u,@) — (pt+0)°uj (t) =
2 Hk—2 Mk —2
M[#lkﬂzk[qJ ((ﬂlk —1)(q t+lj — (px —1)(Cplt+1j J(Pik +

(i=12). (30)

Yk

P 0 H2k -1 0 Hik 1
i 2k (12K 1)( t+1] — 11k (11K 1)( t+1J ik
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t H2k =2
+pj ik (rit2) ’3)[ﬂ2k(u2k 1)[ X q] -

0 (pz+q) PT+q
pt+q Hk —
— ik (tak 1)( J dr| (i=12k=12,..) . (31)
Pr+q

Putting the expression of (31) in (28) we obtain

a(t) =[h(t) t]*{(pt+qfh"a)— (Xpt)—
ZCOSAKXQ (pt q)

k

0 2 0 Mk —2 0 H2k—2
x| Mk Mok (Hj (ruk —1)[at +1J — (mok —1)(Et +1] Pic +
D 0 H2k—1 0 k-1
+E ok (Hok —D(at +1j — tak (£ak —D(aHl) Wik

tFy (r;u,a t+q |12k 2
+ pJL:),)[,UZk (12K —1)( ra -

0o (pr+0Q) pPz+q

k-2
pt+q
— -1 dr | -
ik (tak )(DT+CJ }T]

ZSInﬂkXo (pt q)

k

D 2 D k-2 0 MoKk —2
x|tk Mok [aj (L1 —1)(Et+1j — (2 —1)(at+1} Yok +

D 0 H2k -1 0 Hk-1
+a ok (£2k —D(at +1J — ik (rak —D(at +1J Wk
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UE, (r:u,a t+q )22
+DJL3) ok (t2k —1)( P qj -
0o (pr+0Q) Pz+Q

k=2
t+
—ﬂlk(ﬂlk_l)( ;’HU dr |t (32)

Thus, the solution of problem (1)—( 3), (8),(9) was reduced to the solution of
system (27), (32) with respect to unknown functions u(x,t) and a(t).
The following lemma is valid.
Lemma 1. If {u(x,t),a(t)} is any solution to problem (1) - (3), (8),(9),
then the functions

1 1
1o (t) = Ju(x,t)dx , ugy (t) =2[u(x,t)cos Yy xdx (k=12,..),
0 0

1
Upk (t) = 2[u(x,t)sin 4y xdx (k =1,2,...).
0
satisfies the system (25), (26) in C[0,T].
It follows from Lemma 1 that
Corollary 1. Let system (27), (32) have a unique solution. Then problem (1)
- (3), (8), (9) cannot have more than one solution, i.e. if the problem (1) - (3), (8),
(9) has a solution, then it is unique.
With the purpose to study the problem (1) - (3), (8), (9), we consider the
following functional spaces.

Denote by BST [9] a set of all functions of the form

u(x,t) =D uy (t)cos A x+ D Uy (t)sin 4, x (4 =2kx),
k=0 kL

defined on D; such that the functions u,, (t) (k=0,12,...),

U, (t) (k=1,2,..) are continuous on
[0,T] and

”ulo(t)”C[O,T] +(kZ: (ﬂi ” Uy (t) ”c[o,T])ZJ2 +(Z (/‘ii " Usy (t) ”C[O,T])zjz < Fo.

=1 k=1
The norm on this set is given by

1000y, Oy RN O |+ SN O] |

0 )
k=1 k=1

It is known that BST is Banach space .
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Obviously, ET3 = B;T xC[0,T] is also Banach space, where the norm of an
element z = {u, a,b} is determined by the formula
[z )]s =[uxOflge, +[a®]eor;-
Now consider the operator
®(U1a) ={(Dl(u,a),CI)2(u,a)},

in the space = , Where

@, (u,a) =0(x,t) = > O, () cos A, X+ > U, (t)sin A, X,
pary =

@, (u,a) = &)
and the functions Upq(t), Uik (t), (i=12;k =1,2,...,) and a(t) are equal to the

right-hand sides of (25), (26),(32) respectively.
It is easy to see that

Hik Hik — ]
Hik <0, (£t+1j <1,(Mj <1,
q prz+q
(i=12; j=012,k=12,.;0<t<T;0<7r<t),

2 2 V0
|y,k|<1 O R Y Y <222 (i=12:k=12,..),
p 4/ p PP
|/~11kﬂ2k| ° ,71k= L > < pzzy—g.
1 a/lﬁ ,Biﬁ aﬂk ﬂ’k
4l p | p

Given these relationships, we have:

_ TVT (T 2
[520 0,77 <0l + Tlwol +—2(I| f10(7)] dr} +
q 0
T2
+?”a(t)”0[o:]”ulo(t)”c[o,T] ' (33)

1 1
[ $ A Olegor? j <2000 3 lou)2 | 250 5 2]
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270 uki(/lf i (T)DZdTT + 2x£g’ 2T [a(®)]ogr, (2(/15 luge (t)"c[o,n)zjz
(I 1 2) (34)
JaOery <[0T I+ a0 O~ 1 (6t)],,,+

1

=

+4(pT +q)27o(iﬂkzj22{aﬁ (Z(ﬂk |4 ])? J

k=1 =1

1

2(2 5 o2 «? Te )2
+—3[Z(ﬂkll//ik|) J + VT [ Sl fi@D?de | +
Pg- \k=1 pPq ok

[ =

NI |u\

T Ol | S I Ol | }

Let us assume that the data of problem (1)-(3), (8)-(9) satisfy the following
conditions:
a2
1. a>0, >0, ?—,B>O.

2. p(x) € C2[01], 9"(X) € Lp(0), (0) = p(1), ¢'(0) =¢'(1), 9"(0) = "(1) .
3. w(x) eC?[01], " (x) e Lp(02)
w(0) =y, 'O =y'QD), ") =y"Q).
4. £(x,1), fx(X,1), f (X,t) € C(Dr), frox (X,1) € Lp(Dr),
f(O,t)=f@t), f,(0,t)=f,(@Lt), fi (O,t)= fy (Lt)(O<t<T).

5. h(t)eC?[0,T], h(t)=0 (0<t<T).
Then from (33)-(35) we get:
30D, < AM+BM[a®] o, OO, 36)

[&0ory < AM +B.M @O [ux D], . @D

where

TVT
A(T) = ”(/’(X)” L2(0,2) +T”W(X)” L2(02) * q 2 ” Fx, t)” L2(Dr) *

258



PROCEEDINGS OF 1AM, V.13, N.2, 2024

2\/_057/ ,,, 2\/50!]/ " 27
; ol 0 * 0|(//(x)|||_2(0'1)+Eg\/ﬁ||f>o<(x,t)||L2(DT)
T2 245
B (T)=—5 +——20T,
9  pq

AM =[[ho]”

R[S RORLICER .

1
» 2
+8(pT +0)2 %, [Zﬂkj [—ff le" (O, oy +
= 0

2
V' 00 % VT fa (. Ol (o )}}

70(pT +q)° (iﬂkzj

k=1

+“_|
P’

I\)H—‘

B,(T) = 4|[h]”

C[0,T]
From inequalities (36),(37) we conclude

306 D]+ ggor, < AT+ BM) [a®) o ry U D, (38)
where

A(M) =AM+ A(T), B(T)=B/(T)+B,(T),

Thus, we can prove the following theorem
Theorem 2. Assume that statements 1-5 and the condition

(B(T)A()+2)* <1 (39)
holds, then problem (1)-(3), (8),(9) has a unique solution in the ball
K =KRg(|Z]z3 <R<A(T)+2) of the space E.
T

Proof. In the space E% , consider the operator equation
z2=0z, (40)
where z={u,a}, and the components ®,(u,a) (i=1,2), of operator ®(u,a)
defined
by the right sides of (27) and (32) .
Consider the operator ®(u,a)in the ball K =K, out of E-? Similarly to

(38), we obtain that for any the estimates are valid: respectively and the following
inequalities hold:
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|z

o SAM)+BMa®)]or, U D], <AT)+BT)(AT)+2)'  (41)

|z, @z, < zB(T)R(nul(x,t)_uz(x,t)”Bgg +||a1(t)_a2(t)||c[m)

“ Then it follows from (39), (41), and (42) that the operator @ acts in the ball
K =KR, and satisfy the conditions of the contraction mapping principle.
Therefore the operator @ has a unique fixed point {z}={u,a} in the ball
K = KR, which is a solution of equation (40); i.e. the pair {u,a,b} is the unique
solution of the systems (27) and (32) in K = K.

Hen the function u(z,t) as an element of space BST is continuous and
has continuous derivatives u, (x,t),u_ (x,t) in Dy .

Now, from (29) we get:

2\/36!]/0 ||l// m(

"N p00 * Xip0m *

1
(i(ﬂﬁ U 2}2 2\/—ﬂ7o|
k=1

2\/5057/ 2.5 £ 2
+T0ﬁ” fxxx (X't)”LZ(DT) +#”aa)”c[o:] [;(ﬂf ”uk (t)”c[o,T])zj '

This implies that U, (X, 1), U, (X,t),u, (X,t) are continuous in D .
Further, from (22) we have:

sy} Bt
k=1 g \k=1 '

+2_?(§(A1§ ”uik (t)”qo,T])zj2 X (X't) + a(t)ux (X’t)HC[OT

(i=12)
] L,(0)

It is clear from the last relation that Uy (X,t) is continuous in Dy .

It is easy to verify that Eq. (1) and conditions (2), (3), (8), (9) satisfy in the
usual sense. So, {u(x,t),a(t)} is a solution of (1)-(3), (8), (9), and by Lemma 1 it

is unique in the ball K = Kg. The proof is complete.
In summary, from Theorem 1 and Theorem 2, straightforward implies the
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unique solvability of the original problem (1) - (5).
Theorem 3. Suppose that all assumptions of Theorem 2,

1
jf(x,t)dx=0 (0O<t<T) and the compatibility conditions (6),(7) holds.
0
Then problem (1) - (5) has a unique classical solution in the ball

K= KR(||Z||E$, < A(T)+2) of the space E3 .
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