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Abstract: The theory of wavelets provides an extremely useful mathematical tool for 

hierarchically decomposing function efficiently and correctly. A wavelet representation of 

functions consists of approximation coefficients and detail coefficients that influence the 

function at various scales. In this paper, B-spline biorthogonal wavelet multigrid method is 

proposed for the numerical solution of couple stress full Reynolds equation. The 

performance of proposed scheme is better than the existing ones in terms of super 

convergence with low computational time, is shown for elliptic partial differential equation 

first and then applied to Reynolds equation. The test problems are presented to demonstrate 

the versatility and applicability of the proposed method. 
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1. Introduction 

 

In the numerical research, wavelets are used as well-organized tool for the 

rapid numerical applications in the differential equations [11-13, 15, 27, 28]. They 

are generally applied in engineering field namely signal analysis, image processing, 

etc [1-3, 18, 36]. Consequently, the development of multi-resolution analysis and 

the fast wavelet transforms by Avudainayagam and Vani (2004) and Bujurke et al. 

(2006, 2007a and 2007b) led to extensive research in the wavelet multigrid (WMG) 

schemes for the numerical solution of certain differential equations arising in fluid 

dynamics. Shiralashetti et al. (2017) had proposed the modified wavelet multigrid 

method (MWMG) for the solution of boundary value problems. Extension to this, 

the same procedure has applied for the numerical solution of modified Reynolds 

equation (Shiralashetti, Kantli and Deshi Forthcoming). Beylkin, Coifman and 

Rokhlin (1991) observed that wavelet decomposition can be used to approximate 

the systems of certain different types of highly sparse matrices.  

The biorthogonal wavelets reveal both higher compression factors and 

faster execution than the corresponding orthogonal wavelets at comparable 

accuracy. Thus, they are highly competitive, alternative to Daubechies wavelet and 

Coiflets for the applications in numerical approximation. For the finest results, the 
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wavelets should have several vanishing moments, good advantages and a support 

as small as possible. Orthogonal wavelets are expected to give the best 

compression ratio, while biorthogonal wavelets lead to faster decomposition 

algorithms at slightly reduced compression. Extension to (Shiralashetti, Kantli and 

Deshi Forthcoming), the main objective of this paper is to introduce the B-spline 

biorthogonal wavelet multigrid (BBWMG) schemes for the numerical solution of 

couple stress full Reynolds equation. 

Traditionally, the studies of squeeze film motion focus upon the 

characteristics of porous bearings lubricated with a Newtonian fluid as lubricant in 

which the fluid is assumed to obey the Newtonian postulate that the stress tensor is 

directly proportional to the deformation tensor. However, with the growth of 

modern machine equipments, the increasing use of non-Newtonian fluid as 

lubricants are becoming of great interest. Among these theories, the Stokes (1966) 

micro continuum theory is the simplest generalization of the classical theory of 

fluids, which allows for polar effects such as the presence of couple stresses and 

body couples in a continuous medium. The classical Newtonian theory will not 

predict the accurate flow behavior of fluid suspensions, especially when the 

clearance in the bearing is comparable with average size of the lubricant additives. 

The consideration of couple stress in addition to the classical Cauchy stress has led 

to the current development of theories of fluid micro continua. The Stokes couple 

stress theory of fluids defines the rotation field in terms of the velocity fields. 

Several researchers for example, Luhmar (2005), Naduvinamani, Hiremath and 

Gurubaswaraj (2001a) used this couple stress fluid theory for the study of different 

bearing systems. Ramanaih and Sarkar (1978 and 1979) studied the effect of 

couple stress on the squeeze film between two parallel rectangular plates with 

infinite lengths and that between two parallel rectangular plates with finite size. 

Lin, Lu and Chang (2003) worked on the derivation of dynamic couple stress 

Reynolds equation of sliding squeezing surfaces and numerical solution of plane 

inclined slider bearing. Recently the contribution in this regard includes finite 

difference method (Naduvinamani and Marali 2007; Naduvinamani and Patil 

2009), finite element method and multigrid (MG) method, etc.  

The multigrid scheme is largely applicable in increasing the efficiency of 

the iterative methods to solve system of algebraic equations. It is a well-founded 

numerical method for solving system of equations for an approximating the given 

differential equation. Nowadays, it is recognized that MG iterative solver is highly 

efficient for the differential equations, introduced by Brandt (1977). For a detailed 

treatment of MG is given in Briggs, Henson and McCormick (2000). An 

introduction of MG is found in Hackbusch and Trottenberg (1982), Wesseling 

(1992) and Trottenberg, Oosterlee and Schuller (2001). The ill-conditioned 

matrices are arising in the solution of system of algebraic equations. The suitable 

remedy is multigrid schemes for such matrices. Matrices are dense with non-

smooth diagonal and smooth away from the diagonal. This smoothness of the 

matrix transforms into smallness in wavelet transform and facilitates in the design 

or construction of efficient multigrid scheme using biorthogonal discrete wavelet 

transform (BDWT).  
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Sweldens (1994) highlighted effectively the construction of biorthogonal 

wavelet filters for the solution of large class of ill-conditioned system. The BDWT 

matrix designed and implemented by Ruch and Fleet (2009) for decomposition and 

reconstruction of the given signals and images. Shiralashetti, Kantli and Deshi 

(2018) and Shiralashetti, Angadi and Deshi (2019) proposed the Biorthogonal 

wavelet based full-approximation schemes for the numerical solution of elasto-

hydrodynamic lubrication problems and parabolic partial differential equations. 

Extension to this, we introduced restriction and prolongation operators, 

respectively using decomposition and reconstruction matrices in the 

implementation of BBWMG schemes for the numerical solution of couple stress 

full Reynolds equation. 

This paper is follows as, Preliminaries of biorthogonal wavelets are given 

in section 2. Section 3 deals with the formulation of the problem. Section 4 

describes the method of solution using intergrid operators. Numerical solutions of 

the test problems are presented in section 5. Section 6 represents the results and 

discussion. Finally, conclusions of the proposed work are discussed in section 7.  

 

2. Biorthogonal wavelets 

 

 Biorthogonal wavelets are the important things in many profitable claims 

like signal processing, finger print image compression. In various filtering 

applications, we need filters with symmetrical coefficients to accomplish linear 

phase. None of the orthogonal wavelet systems apart from Haar are having 

symmetrical coefficients. But Haar is too insufficient for countless practical 

applications. Biorthogonal wavelet system can be planned to have this property. To 

understand the entire theory more let us primarily consider some biorthogonal 

filters and construct corresponding scaling functions and wavelet functions. Spline 

based biorthogonal wavelet systems are more easy to construct (Soman and 

Ramachandran 2005). 

 

2.1. B-spline biorthogonal wavelets/Cohen-Daubechies-Feauveau (CDF) 

wavelets  

 

We know that, the splines of any order follow scaling relation. But their integer 

translates are not orthogonal (apart from Haar). The generalized scaling relation of 

spline ( )mN x , 

0

( ) (2 )
m

m i m

i

N x p N x m


                                           (1)            

where 

1

1

2
i m

m
p

i

 
  

 
.                                                 (2)          

Therefore, we find the dual scaling function. 
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Let,      
2 0 2( ) ( ) and span{ ( )}

m

x N x V N x m    .                                            (3)         

Let us take a matching ( )x  whose scaling relation have five continuous 

non-zero coefficients. Support of ( )x  is 5. We could have preferred any positive 

odd number (other than 3) the support of its dual, that is ( )x , since 

,0( ) ( ) mx x m dx    . For the spline scaling function 2 ( )N x , scaling function 

coefficients are 1/2, 1, 1/2. However, these are not normalized. We know that the 

sum of normalized coefficients is 2 , which follows from the constraint that 

( ) 1x dx  . 

1 1 1
1 2

2 2 2
a a
 

     
 

.                                         (4) 

Therefore, normalized coefficients of 2( ) ( )x N x   are: 
1 1 1

, ,
2 2 2 2 2

. 

Let (0), (1), (2), (3), (4)f f f f fh h h h h  be the normalized scaling filter 

coefficients of ( )x . Since 
,0( ) ( ) mx x m dx    , we have  

,0( ) ( 2 )f f m

n

h n h n m   .                                             (5) 

This is the main relation which decides ( )x . 

In the orthogonal case, we have 

,0( ) ( 2 )f f m

n

h n h n m   ,                                             (6) 

i.e., ( )fh n  is orthogonal to even translate of itself. Here 
fh  is orthogonal to 

fh , 

thus the name biorthogonal. Eq. (5) is the key to understanding of the B-spline 

biorthogonal wavelets. Assume ( )fh n  is non-zero when 
1 2N n N   and ( )h n  is 

non-zero when 1 2N n N  . Eq. (5) implies that, 

2 1 2 12 1 and 2 1, ,N N m N N m m m Z       .                             (7) 

In the orthogonal case, this shrinks to the well-known fact that the length of 
fh  has 

to be even. Eq. (5) also implies that the difference between the lengths of 
fh  and 

fh  must be even. Thus, their length must be either even or odd. Now, try to 

visualize Eqs. (5) and (7). The arranging of scaling function coefficients is main 

thing. If Eq. (7) is not satisfied then it is not possible to get an achievable solution 

for ( )fh m  coefficients. Many applications require symmetric scaling function 

coefficients. For symmetry, we need (0) (4) and (1) (3)f f f fh h h h  . Now, 

apply these conditions on coefficients.  



PROCEEDINGS of  IAM, V.13, N.1, 2024 

 

7 

 

 

For ( ) 1x dx  , we have the condition 

( ) 2f

m

h m                                                                (8) 

which implies 2 (0) 2 (1) (2) 2f f fh h h   . 

For 0m  , Eq. (5) gives 

1 1 1 1 1
(1) (2) (1) 1 (1) (2) 1

2 2 2 2 2 2 2
f f f f fh h h h h      .             (9) 

For 1m  , Eq. (5) becomes, 

1 1 1
(1) (0) 0 (1) (0) 0

22 2 2
f f f fh h h h     .                               (10) 

For 1m   , that also gives the same condition as given in Eq. (10), since we 

assumed that ( )fh m  are symmetric.  

Since ( ) ( )x x  , we have 

1 1

1

0

( ) ( 1) ( 1) (2 )
L

n

f

m

x h L m x m




      ,                                    (11) 

i.e. ( )x  function depends on ( )fh m , such that ( ) 0x dx  . This requires that 

1 1

1

0

( 1) ( 1) 0
L

n

m

h L m




     which is the vanishing moment condition, where 1L  is 

length of the filter. Thus, we have 

(4) (3) (2) (1) (0) 0 2 (0) 2 (1) (2) 0f f f f f f f fh h h h h h h h         .    (12) 

By combining all conditions, we have 

i. Normality: 2 (0) 2 (1) (2) 2f f fh h h   . 

ii. Biorthogonality: For 0m  , 
1 1

(1) (2) 1
2 2

f fh h   and  

                      For 1m  , 
1

(1) (0) 0
2

f fh h  . 

iii. .Vanishing moment: 2 (0) 2 (1) (2) 0f f fh h h   . 

Solving the above equations, we get 

2 2 3 2
(0) , (1) , (2)

8 4 4
f f fh h h


   . 

By symmetry, 
2 2

(3) , (4)
4 8

f fh h


  . Ruch and Fleet (2009) had built a 

biorthogonal structure called dual multi-resolution analysis that allows for the 

construction of symmetric scaling filters and that can incorporate spline functions. 



S.C. SHIRALASHETTI, A.B. DESHI, M.H. KANTLI: B-SPLINE BIORTHOGONAL … 

8 
 

They used instead of scaling ( )fh  and wavelet ( )fg  filters, the new construct 

yields scaling ( )fh  and wavelet ( )fg  filters as decomposition and reconstruction. 

Instead of a single scaling function ( )x  and wavelet function ( )x , the dual 

multi-resolution analysis requires a pair of scaling functions ( )x  and ( )x  

related by a duality condition similarly, a pair of wavelet functions ( )x  and 

( )x . To construct the BDWT matrix, follow the same procedure as used to build 

the orthogonal discrete wavelet transform matrix. Due to excellent properties of 

biorthogonality and minimum compact support, CDF wavelets can be useful and 

convenient, providing guaranty of convergence and accuracy of the approximation 

in a wide variety of situations. 

In this paper, we use CDF (2, 2) filter coefficients which are, Low pass filter 

coefficients:  

1 0 1 2 3

2 2 3 2 2 2
, , , ,

8 4 4 4 8
f f f f fh h h h h        . 

High pass filter coefficients: 
1 0 1

2 2 2
, ,

4 2 4
f f fg g g      for 

decomposition matrix. 

Low pass filter coefficients: 1 1 0 0 1 1, ,f f f f f fh g h g h g     . High pass filter 

coefficients: 
1 3 0 2 1 1 2 0 3 1, , , ,f f f f f f f f f fg h g h g h g h g h          for 

reconstruction matrix.   

 

2.2. Biorthogonal discrete wavelet transforms (BDWT) matrix 

 

The matrix formulation of the BDWT plays an important role in the biorthogonal 

wavelet method for the numerical computations. We know about the BDWT matrix 

and its applications in the wavelet method and are given as, 

 

Decomposition matrix: 

 

0 1 2 3 1

0 1 1

1 0 1 2 3

1 0 1

2 3 1 0 1

1 0 1

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0

0 0 . . . 0

0 0 0 0 . . . 0

f f f f f

f f f

f f f f f

f f f

f f f f f

f f f
N N

h h h h h

g g g

h h h h h

Dw g g g

h h h h h

g g g














 
 
 
 
 
 
 
 
 
 
 
 

 and 
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Reconstruction matrix: 

     

0 1 1

0 1 2 3 1

1 0 1

1 0 1 2 3

1 0 1

2 3 1 0 1

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0

0 0 0 0 . . . 0

0 0 . . . 0

f f f

f f f f f

f f f

f f f f f

f f f

f f f f f
N N

h h h

g g g g g

h h h

Rw g g g g g

h h h

g g g g g














 
 
 
 
 
 


 
 
 
 
 
 
 

. 

Using these matrices, we introduced restriction and prolongation operators, 

respectively as same as the restriction and prolongation operators of the multigrid 

scheme and the detailed procedure is explained in section 4. 

 

2.3. Modified biorthogonal discrete wavelet transform (MBDWT) matrix 

 

Here, MBDWT matrix is developed alike BDWT matrix in which by adding rows 

and columns consecutively with diagonal element as 1, which is built as, 

Modified decomposition matrix: 

0 1 2 3 1

0 1 1

2 3 1 0 1

1 0 1

0 0 0 0 0 0 0 0

0 1 0 0 ... ... . . . 0 0 0 0 0

0 0 ... ... 0 0 0 0

0 0 0 1 0 0 ... ... 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1











 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

f f f f f

f f f

f f f f f

f f f

N N

h h h h h

g g g

MDw

h h h h h

g g g

 

and 

Modified reconstruction matrix: 
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0 1 1

0 1 2 3 1

1 0 1

2 3 1 0 1

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1











 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

f f f

f f f f f

f f f

f f f f f

N N

h h h

g g g g g

MRw

h h h

g g g g g

. 

Using these matrices, a new restriction and prolongation operators are introduced, 

respectively as same as the restriction and prolongation operators of the multigrid 

scheme and the detailed procedure is explained in section 4. 

 

3. Formulation of the problem 

 

The fundamental equations derived by Stokes (1966) for the motion of an 

incompressible couple stress fluid, in the absence of body forces and body 

moments are 

2 4       
Dq

p q q
Dt

                                              (13)  

0 q                                                              (14) 

where   is the density, q  is the velocity vector, p  is the pressure,   is the 

Newtonian shear viscosity and   is a material constant accounting for the couple 

stress property. The ratio 




 
 
 

 has the dimensions of the length squared and hence 

the dimension of 



 characterizes the material length of the couple stress fluid. 

It consists of porous slider with sliding velocity U  including the effect of the 

squeezing action 




h

t
, 1( )h t  is the inlet film thickness and the outlet film thickness 

is 0 ( )h t . The porous region is assumed to be homogenous and isotropic and the 

lubricant is incompressible couple stress fluid. Pinkus and Sternlicht (1961) 

observed that under the usual assumptions of the hydrodynamic lubrication, 

applicable for thin films, the Eqs. (13) and (14) of motion take the form; 
2 4

2 4
 

  
 

  

p u u

x y y
,                                                        (15) 



PROCEEDINGS of  IAM, V.13, N.1, 2024 

 

11 

 

2 4

2 4
 

  
 

  

p w w

z y y ,                                                     
(16) 

0





p

y ,                                                                
(17) 

0
  

  
  

u v w

x y z
.                                                          (18) 

The relevant boundary conditions for velocity components are 

(i) At the upper solid surface ( )y h  

0 u w                                                               (19) 





h
v

t
 (squeezing velocity)                                                 (20) 

2 2

2 2
0

 
 

 

u w

y y
. (vanishing of couple stresses)                                     (21) 

(ii) At the fluid porous interface ( 0)y  

                1 v v   , (continuity of vertical component)                                   (22) 

2 2

2 2
0

 
 

 

u w

y y
. (vanishing of couple stresses)                                  (23) 

The solution of Eqs. (15) and (16) subject to boundary conditions (19), (21) and 

(23) is obtained as 

2 2

2
cosh

1 2
2 1

2
cosh

2



   
           

    
      

y h

p l
u y hy l

hx

l

                                     (24) 

2 2

2
cosh

1 2
2 1

2
cosh

2



   
           

    
      

y h

p l
w y hy l

hz

l

                                   (25) 

where 

1/2





 
  
 

l  couple stress parameter.  

Integrating the continuity Eq. (18) with respect to y  over the film thickness gives; 

0 0 

   
   

   
 
h h

y y

v u w
dy dy

y x z
.                                          (26) 

By replacing the velocity components u  and w  with their expressions given in 

Eqs. (24) and (25), and also using the boundary conditions (20) and (22), the Eq. 

(26) gives the modified Reynolds type equation in the form 
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1 0( , ) ( , ) 12 12 ( )  

       
            

y

p p h
f h l f h l v

x x z z t
,                       (27) 

where 

3 2 3( , ) 12 24 tanh
2

 
    

 

h
f h l h l h l

l
 .                                        (28) 

The flow of couple stress fluid in a porous matrix is governed by the modified form 

of Darcy law which accounts for polar effects given by Naduvinamani, Hiremath, 

and Gurubasawaraj (2001b) 
*

1
(1 ) 

 


 

k p
u

x
,                                                     (29) 

*

1
(1 ) 

 


 

k p
v

y
,                                                   (30) 

*

1
(1 ) 

 


 

k p
w

z
,                                                     (31) 

where 1u , 1v , 1w  are modified Darcy velocity components along x , y , z  

directions, respectively, 
*p   is the pressure in the porous region, ( )   k , k  

is a permeability of the porous material. The parameter   represents the ratio of 

microstructure size to the pore size. For the flow of couple stress fluid in the porous 

matrix, 1  . Due to continuity of fluid in the porous matrix, the pressure 
*p  

satisfies the Laplace equation 
2 * 2 * 2 *

2 2 2
0

  
  

  

p p p

x y z
.                                              (32) 

Integrating with respect to y  over the porous layer thickness H  and using the 

boundary condition of solid backing 

*

0



 
 

  y H

p

y
, we obtain 

0* 2 * 2 *

2 2

0 

     
     

     

Hy

p p p
dy

y x z
.                                   (33) 

Assuming the porous layer thickness H  to be very small and using the continuity 

condition of pressure 
*( )p p  at the porous interface ( 0)y , Eq. (33) reduces 

to 
* 2 * 2 *

2 2

0

     
     

     y

p p p
H

y x z
,                                  (34) 

then the velocity component 1v  at the interface ( 0)y  is given by 
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 

2 * 2 *

1 0 2 2
( )

1 


  
   

   
y

kH p p
v

x z
.                                    (35) 

Substituting Eq. (35) in Eq. (27), the Dynamic Reynolds equation is obtained in the 

form    

12 12
( , ) ( , ) 12

(1 ) (1 )


 

          
         

            

kH p kH p h
f h l f h l

x x z z t
.      (36) 

Introducing the non-dimensional quantities; 

0

0

2

1 1 1 1 13

0 0

, , , , , ,


      m

mm m

phh Ut x z kH l
h P t x z l

h LU L L B h h
 .                (37) 

After introducing the non-dimensional quantities, the dynamic Reynolds equation 

for the porous slider bearings can be expressed in a non-dimensional form as 
2

1
1 1 1 1 1 12 2

1 1 1 1

12 1 12
( , ) ( , ) 12

(1 ) (1 )

 

  

         
         

           

hP P
f h l f h l

x x z t
 , (38) 

where 

3 2 3 1
1 1 1 1 1 1 1

1

( , ) 12 24 tanh
2

 
    

 

h
f h l h l h l

l
.                                   (39) 

In the limiting case 0  , Eq. (38) reduces to the solid case studied by Lin, Lu 

and Chang (2003). To study the static and dynamic characteristics of the porous 

plane inclined slider bearing, the film thickness is separated into two parts: the 

minimum film thickness ( )mh t  and the slider profile function ( )sh x  

( , ) ( ) ( ) ( ) 1
 

     
 

m s m

x
h x t h t h x h t a

L
 

where 1 0( ) ( ) a h t h t , L  is length of the bearing and its non-dimensional form 

is 

 1 1 1 1 1 1 1 1 1 1( , ) ( ) ( ) ( ) 1    m s mh x t h t h x h t x ,                         (40) 

where 
0


 
 
 m

a

h
 is the slider-profile parameter. 

The steady and dynamic characteristics of the porous bearings are obtained by 

using the perturbations in steady-state minimum film thickness at the outlet 0mh . 

The minimum film thickness and the local film pressure are assumed to be of the 

form 
1 1

1 0 11 ,    
it it

mh e P P P e ,                                          (41) 

where   is the perturbation amplitude and is assumed to be small and 1 i . 

Substituting into the dynamic Reynolds-type Eq. (38) and neglecting the higher 
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order terms of  , the two Reynolds-type equations responsible for both steady-

state pressure and the perturbed film pressure obtained are  
2

0 0
10 1 1 10 1 12 2

1 1 1

12 1 12
( , ) ( , ) 6

(1 ) (1 )

 


  

     
        

        
s s

P P
f h l f h l

x x z
,  (42) 

0 1
11 1 1 10 1 1

1 1

2 2

0 1
11 1 1 10 1 12 2 2

1 1

12
( , ) ( , )

(1 )

1 12
( , ) ( , ) 12

(1 )







 

   
    

     

   
    

    

s s

s s

P P
f h l f h l

x x x

P P
f h l f h l i

z z

                               (43) 

where 

 
3 2 3 1

10 1 1 1 1 1 1

1

1
( , ) (1 ) 12 (1 ) 24 tanh

2

 
      

 

s
s s s

h
f h l h l h l

l
,                    (44) 

2 2 2 2 1
11 1 1 1 1 1

1

1
( , ) 3(1 ) 12 12 sec h

2

 
     

 

s
s s

h
f h l h l l

l
.                          (45) 

The boundary conditions for the steady state and perturbed film pressure are 

0 0P  at  1 1 1 10, 1, 0, 1   x x z z ,                                      (46) 

1 0P  at  1 1 1 10, 1, 0, 1   x x z z .                                      (47) 

The full Reynolds equation will be solved numerically by using a finite difference 

method (FDM). In finite increment format, the terms in the Eqs. (42) and (43) can 

be expressed as 

0 1, 0 , 0 , 0 1,0

10 1 1
10 , 10 ,

1 1 1 1 12 2

12 1 12 12

(1 ) (1 ) (1 )

i j i j i j i j

i j i j

P P P PP
f f f

x x x x x

  

  

 

 

 
    

       

          
          
          

 
2

0
10 10 , 0 , 1 0 , 0 , 12 2

1 1

12 1 12
2

(1 ) ( ) (1 )

 

 
 

   
       

      
i j i j i j i j

P
f f P P P

z z
, 

1 1, 1 , 1 , 1 1,01

10 11 1 1
10 , 10 ,

1 1 1 1 1 12 2

0 1, 0 , 0 ,

1 1
11 , 11 ,

1 12 2

12 1 12 12

(1 ) (1 ) (1 )

1

i j i j i j i j

i j i j

i j i j i j

i j i j

P P P PPP
f f f f

x x x x x x

P P P
f f

x x

  

  

 

 



 

 
     

        

 
 
 

          
          
          

 
 
 

0 1,

1

i j
P

x





  
  
  

 

and 

 

 

22

01
10 11 10 , 1 , 1 1 , 1 , 12 2 2

1 1 1

11 , 0 , 1 0 , 0 , 12

1

12 1 12
2

(1 ) ( ) (1 )

1
2

( )

 

 
 

 

   
        

       

  


i j i j i j i j

i j i j i j i j

PP
f f f P P P

z z z

f P P P
z

. 
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Substituting these expressions into the steady-state and perturbed Reynolds Eqs. 

(42) and (43), we get 

0 , 1 0 1, 2 0 1, 3 0 , 1 4 0 , 1 5i j i j i j i j i jP a P a P a P a P a                                      (48) 

1 , 1 1 1, 2 1 1, 3 1 , 1 4 1 , 1

6 0 1, 7 0 1, 8 0 , 1 9 0 , 1 10 0 ,

rpi j rpi j rpi j rpi j rpi j

i j i j i j i j i j

P a P a P a P a P

a P a P a P a P a P

   

   

   

    
                         (49) 

1 , 1 1 1, 2 1 1, 3 1 , 1 4 1 , 1 11ipi j ipi j ipi j ipi j ipi jP a P a P a P a P a                                   (50) 

where the perturbed film pressure has been expressed in terms of real and 

imaginary parts, 
1 1 1rp ipP P iP  . 

The coefficients from 0a  to 11a be defined as 

2 2

1 1 0
10 ,

2

12

(1 )






 
  

 
i j

a b f a  

2 2

2 1 0
10 ,

2

12

(1 )






 
  

 
i j

a b f a  

3 4 10 , 0

12

(1 )





 
   

 
i ja a f a  

2 2

5 1 06 ( )  a z a  

2 2

6 1 0
11 ,

2
i j

a b f a


  

2 2

7 1 0
11 ,

2
i j

a b f a


  

2 2

8 9 11 , 0i ja a b f a   

2 2

10 1 012 ( )   a z a  

2 2

11 1 1 11 , 0
11 , 11 ,

2 2

2 i j
i j i j

a b f f f a
 

  
    
   

 

where 
2 2

0 1 1 10 ,
10 , 10 ,

2 2

12 12 12
2

(1 ) (1 ) (1 )

  


   

   
        

    
i j

i j i j
a b f f f

 

         

(51) 

and 1 1b z x    . 

The steady-state pressure and perturbed film pressure are calculated by using FDM. 

The steady-state load capacity sW  and perturbed film force dW  are evaluated by 

integrating the steady-state film pressure and perturbed film pressure respectively 

over the film region. 
2

02

0 0 0

x L z B

m x z

s
UL B

W p dxdz
h


 

 

                                                (52) 
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2

12

0 0 0

x L z B

m x z

d
UL B

W p dxdz
h


 

 

                                                (53) 

where B  is width of bearing and above equations are in non-dimensional form 
1 1 1

1 1

1 12

0
1 0 1 1 0 , 1 12

0 00 0

x z MM
m

i j

i jx z

s
s

W h
W P dx dz P x z

UL B

 

  

                            (54) 

 
1 1 1

1 1

1 12

0
1 1 1 1 1 , 1 12

0 00 0

x z MM
m

i j

i jx z

d
d

W h
W Pdx dz P x z

UL B

 

  

                             (55) 

 

where 1M  and 1 1M   are the grid-point numbers in the 1x  and 1z  directions 

respectively, having 1( 1) ( 1)   N M M equations with N unknowns to 

determine. From the linear theory, the resulting dynamic film force can be 

expressed in terms of linearized spring and damping coefficients. 

1 1 1

0 0

1

( )    
it it it

m md d d
d

W e S h e C h e
dt

                                (56) 

which is in non-dimensional form 

1 1 1d d dW S iC                                                      (57) 

where 
3

0
1 2

md
d

S h
S

UL B
  and 

3

0
1 3

md
d

C h
C

L B
 . 

The dimensionless stiffness coefficient 1dS  and the damping coefficient 1dC  are 

obtained by equating the real and imaginary parts of 1dW  respectively as 

1

1 1 1 , 1 1

0 0

Re( ) ( )
 

     
MM

rp i j

i j

d dS W P x z                                  (58) 

1

1 1 1 , 1 1

0 0

Im( ) ( )
 

     
MM

ip i j

i j

d dC W P x z                                 (59) 

 

4. Method of solution 

 

From the system (48)-(50), we have  

Au b                                                          (60) 

where A  is N N  coefficient matrix, b  is 1N   matrix and u  is 1N   matrix to 

be determined. By solving the Eq. (60) through the iterative method, we get the 

approximate solution v  of u . i.e. u e v v u e     , where e  is ( 1N   

matrix) error to be determined. In the numerical methods, approximate solution 
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containing some error. There are many approaches to minimize the error. Some of 

them are multigrid (MG), B-spline biorthogonal wavelet multigrid (BBWMG) and 

modified B-spline biorthogonal wavelet multigrid (MBBWMG) methods etc. Now, 

we are discussing about the method of solution of each, as follows. 

 

4.1. Multigrid (MG) method 

 

From Eq. (60), we get the approximate solution v  of u . Now we find the residual 

as, 

                    1 1 1N N N N N
r b A v   

                                         (61). 

We reduce the matrices from the finer level to coarsest level using Restriction 

operator, i.e. 

/2

1 2 1 0 0 0 0

0 0 1 2 1 0 01

0 04

0 0 1 2
N N

R



 
 
 
 
 
 

 

and then construct the matrices back to finer level from the coarsest level using 

Prolongation operator, i.e.  

/2

1 0 0 0

2 0 0 0

1 1 0

0 21

0 12

0 0 0 1

0 0 0 2
N N

P



 
 
 
 
 
 
 
 
 
 
 
 
 

.

 

From (14), 

                                                        /2 1 /2 1N N N N
r R r  

                                    (62) 

and                                                  
/2 /2 /2 /2N N N N N N N N

A R A P
   

 . 

Residual equation becomes,      
/2 /2 /2 1 /2 1N N N N

A e r
  

  

where 
/2 1Ne 

  is to be determined. Solve 
/2 1Ne 

 with initial guess ‘0’. 

From (15), 

                                                 /4 1 /4 /2 /2 1N N N N
r R r  

                                    (63) 

and                                             
/4 /4 /4 /2 /2 /2 /2 /4N N N N N N N N

A R A P
   

 . 

Then residual equation becomes,      
/4 /4 /4 1 /4 1N N N N

A e r
  

 . 



S.C. SHIRALASHETTI, A.B. DESHI, M.H. KANTLI: B-SPLINE BIORTHOGONAL … 

18 
 

Solve 
/4 1Ne 

 with initial guess ‘0’. 

Continue the procedure up to the coarsest level, we have, 

 

                                          

   1 1 1 2 2 1
r R r  

                                              (64) 

and                                                       
1 1 1 2 2 2 2 1

A R A P
   
 . 

Residual equation is,      
1 1 1 1 1 1

A e r
  

 . Solve 
1 1e 

 exactly. Now correct the 

solution  

     2 1 2 1 2 1 1 1
u e P e   

  . 

Solve      
2 2 2 1 2 1

A u r
  

  with initial guess 2 1u  . Correct the solution  

     4 1 4 1 4 2 2 1
u e P u   

  . 

Solve      
4 4 4 1 4 1

A u r
  

  with initial guess 4 1u  . Continue the procedure up to the 

finer level, Correct the solution  

     1 1 /2 /2 1N N N N N
u v P u   

  . 

Solve      
1 1N N N N

A u b
  

  with initial guess 1Nu  and 1Nu   is the required 

solution of system (60). 

 

4.2. B-spline biorthogonal wavelet multigrid (BBWMG) method 

 

The same procedure is applied as explained in the case of MG method. Instead of 

using operators ‘ R ’ and ‘ P ’, here we use B-spline biorthogonal wavelet intergrid 

operators as, 

B-spline biorthogonal wavelet restriction operator: 

0 1 2 3 1

0 1 1

1 0 1 2 3

1 0 1

1 0 1

2

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0

0 0 0 0 0 0
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and 

 B-spline biorthogonal wavelet prolongation operator: 
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4.3. Modified B-spline biorthogonal wavelet multigrid (MBBWMG) method 

 

Here also, same procedure is applied as explained in the above methods. Instead of 

using ‘ R ’ and ‘ P ’ matrices, here we use modified B-spline biorthogonal wavelet 

intergrid operators as, 

Modified B-spline biorthogonal wavelet restriction operator: 
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5. Numerical implementation 

In this section, the numerical solution of Reynolds equation is presented to show 

the applicability of the proposed scheme using B-spline biorthogonal wavelet 
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intergrid operators. But, first we consider the elliptic partial differential equation 

having exact solution, to show the efficiency of the method. The error is computed 

using 
ma x max e aE u u  , where 

eu  and 
au  are exact and approximate solutions 

respectively.  

 

Test Problem 5.1: First, consider the elliptic partial differential equation to show 

the efficiency of the method, 
2 2 2

2 2 2

2
cos( )cos( ) 0

1 2

u u
x y

x y


 



 
  

  
, 1 , 1x y                      (65) 

subject to Dirichlet boundary conditions. The exact solution of the problem is 

given by 
2

1
( , ) cos( )cos( )

1 2
u x y x y 





. As per the procedure explained in 

section 4, we obtained the results and are presented in comparison with exact 

solution in Figure 1 and the CPU time of the methods to obtain solutions with the 

maximum errors shown in Table 1. 

 
Figure 1. Comparison of numerical solutions with exact solution of test problem 

5.1 for N=1024. 

Table 1. Maximum error and CPU time (in seconds) of the methods of test 

problem 5.1. 

 

N Method maxE  Setup time 
Running 

time 
Total time 

16 

FDM 2.5315e-02 4.9355e+00 5.1811e-02 4.9873e+00 

MG 2.5315e-02 9.0954e-02 1.9914e-03 9.2946e-02 

BBWMG 2.5315e-02 2.8885e-02 1.8662e-03 3.0751e-02 

MBBWMG 2.5315e-02 2.1270e-02 1.5330e-03 2.2803e-02 

64 

FDM 9.0774e-03 3.9809e+00 5.1928e-02 4.0328e+00 

MG 9.0774e-03 8.8595e-02 3.1203e-03 9.1716e-02 

BBWMG 9.0774e-03 3.3945e-02 1.3185e-03 3.5264e-02 

MBBWMG 9.0774e-03 1.8182e-02 1.6291e-03 1.9811e-02 
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256 

FDM 2.9092e-03 3.0990e+00 6.4944e-02 3.1640e+00 

MG 2.9092e-03 1.0625e-01 3.0143e-03 1.0927e-01 

BBWMG 2.9092e-03 1.2339e-01 1.0318e-03 1.2442e-01 

MBBWMG 2.9092e-03 2.4533e-02 1.7150e-03 2.6248e-02 

1024 

FDM 8.3080e-04 5.0385e+00 1.8907e-01 5.2276e+00 

MG 8.3079e-04 4.7867e-01 4.0125e-03 4.8268e-01 

BBWMG 8.3079e-04 3.7470e-01 2.5374e-03 3.7723e-01 

MBBWMG 8.3079e-04 1.4901e-01 2.6212e-03 1.5163e-01 

 

Test Problem 5.2: Finally, consider the Reynolds equation, to show the 

applicability of the method, solving the system (3.33)-(3.35), we get both steady-

state pressure 
0P  and the perturbed film pressure 

1P  and whose solutions are 

presented in the following figures for different parameters. 

       
(a) l1=0 (Newtonian) 

                 
(b) l1=0.1 
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(c) l1=0.2 

Figure 2. Comparison of numerical solutions of steady-state pressure P0 of test 

problem 5.2 for N=256 for 1.5  , 2  , 0.02   and 0.5  . 
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(c) l1=0.2 

Figure 3. Comparison of numerical solutions of perturbed film pressure P1 of test 

problem 5.2 for N=256 for 1.5  , 2  , 0.02   and 0.5  . 
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(c) 0.2   

Figure 4. Comparison of numerical solutions of steady-state pressure P0 of test 

problem 5.2 for N=256 for 1.5  , 2  , 
1 0.15l   and 0.5  . 

 
(a) 0   (Solid Case) 

         

0
0.5

1

0

0.5

1
0

0.1

0.2

x
1

z
1

F
D

M

0
0.5

1

0

0.5

1
0

0.1

0.2

x
1

z
1

M
G

0
0.5

1

0

0.5

1
0

0.1

0.2

x
1

z
1

B
B

W
M

G

0
0.5

1

0

0.5

1
0

0.1

0.2

x
1

z
1

M
B

B
W

M
G

0
0.5

1

0

0.5

1
0

2000

4000

x
1

z
1

F
D

M

0
0.5

1

0

0.5

1
0

2000

4000

x
1

z
1

M
G

0
0.5

1

0

0.5

1
0

2000

4000

x
1

z
1

B
B

W
M

G

0
0.5

1

0

0.5

1
0

2000

4000

x
1

z
1

M
B

B
W

M
G

0
0.5

1

0

0.5

1
0

1000

2000

x
1

z
1

F
D

M

0
0.5

1

0

0.5

1
0

1000

2000

x
1

z
1

M
G

0
0.5

1

0

0.5

1
0

1000

2000

x
1

z
1

B
B

W
M

G

0
0.5

1

0

0.5

1
0

1000

2000

x
1

z
1

M
B

B
W

M
G



PROCEEDINGS of  IAM, V.13, N.1, 2024 

 

25 

 

(b) 0.1   

       
(c) 0.2   

Figure 5. Comparison of numerical solutions of perturbed film pressure P1 of test 

problem 5.2 for N=256 for 1.5  , 2  , 
1 0.15l   and 0.5  . 

 
Figure 6. Variation of non-dimensional steady load-carrying capacity 

1Ws  with 

profile parameter   for N=256 for 2  , 0.02   and 0.5  . 
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Figure 7. Variation of non-dimensional dynamic stiffness coefficient 

1Sd  with 

profile parameter   for N=256 for 2  , 0.02   and 0.5  . 

 
Figure 8. Variation of non-dimensional dynamic damping coefficient 

1Cd  with 

profile parameter   for N=256 for 2  , 0.02   and 0.5  . 
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Figure 9. Variation of non-dimensional steady load-carrying capacity 

1Ws  with 

aspect ratio   for N=256 for 1.6  , 0.02   and 0.5  . 
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Figure 11. Variation of non-dimensional dynamic stiffness coefficient 

1Cd  with 

aspect ratio   for N=256 for 1.6  , 0.02   and 0.5  . 
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Figure 13. Variation of non-dimensional dynamic stiffness coefficient 

1Sd  with 

profile parameter   for N=256 for 2  , 
1 0.15l   and 0.5  . 
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Using the MatLab, results are obtained of the test problems. By observing results 

of the problem 1, numerical solutions are looking same with exact solution from 

the Figure 1 but the CPU time of the proposed scheme is better than the others, 

which is shown in the Table 1. Next switch on to lubrication problem, according to 

Stokes micro-continuum theory the new material parameter η in the Eqn. (3.1) is 

responsible for the property of couple stress. Therefore, the non dimensional 

couple stress parameter l1 provides the mechanism of interaction of the fluid with 

the bearing geometry. It is expected that the couple stress effects are prominent 

either when the molecular size of additives is large or the minimum film thickness 

is small. i. e. when l1 is large. The values of l1 should be less than 1 for the validity 

of hydrodynamic lubrication i. e. the size of polar additives must be less than the 

minimum film thickness. 

In this paper, with the aid of the non-dimensional parameter l1, the effect of the 

couple stresses upon the steady-state performance and dynamic characteristics of 

infinitely wide inclined porous slider bearings is studied. The effect of the 

permeability on the static and dynamic characteristics of the bearings is analyzed 

through the permeability parameter ψ. When ψ →0, the modified Reynolds 

equation reduces to the solid case studied by Lin, Lu and Chang (2003). The 

variation of non-dimensional steady-state pressure P0 and perturbed film pressure 

P1 for different values of couple stress parameter l1 are shown in the Figure 2 and 

Figure 3, respectively. It is observed that P0 and P1 increase by increasing values of  

l1. The effect of permeability parameter ψ on the variation of P0 and P1 are depicted 

in the Figure 4 and Figure 5, respectively for the aspect ratio δ = 2. It is observed 

that P0 and P1 decrease for increasing values of ψ. 

The variation of non-dimensional steady-load carrying capacity Ws1 with the 

profile parameter λ is presented in Figure 6 for different values of the couple stress 

parameter l1. It is observed that, the effect of couple stress is to increase Ws1 as 

compared to the corresponding Newtonian case (l1 = 0). It is exciting to note that 

the existence of the critical value λc =1.4 for the profile parameter λ at which Ws1 

attains maximum. Figure 7 shows the variation of non-dimensional dynamic 

stiffness coefficient Sd1 with profile parameter λ for different values of l1. It is 

observed that, the effect of couple stress is to increase Sd1 as compared to the 

corresponding Newtonian case (l1 = 0). Further, it is observed that, at the critical 

value λc =1.0 of λ, Sd1 attains the maximum value. The variation of non-

dimensional dynamic damping coefficient Cd1 with profile parameter λ for various 

values of l1 is presented in Figure 8. It is observed that, the effect of couple stress 

on the Cd1 is marginal for the larger values of λ. But there is a significant increase 

in the value of Cd1 for the bearing under a smaller profile parameter. It is also 

observed that the significant reduction in Cd1 by increasing the λ. Figure 9 depicts 

the variation of Ws1 with aspect ratio δ for different values of l1.  

The rapid increase in Ws1 is observed for smaller values of δ, whereas the marginal 

increase in Ws1 is observed for larger values of δ (δ >5). Further it is observed that 

the couple stress fluid provides an increased Ws1 as compared to the Newtonian 

case (l1 =0). The variation of Sd1 with δ for various values of l1 is shown in Figure 

10. The sharp increase in Sd1 is observed for smaller values of the aspect ratio δ 
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(0<δ <5) and the marginal increase in Sd1 is obtained for larger values of δ. Figure 

11 represents the variation of non-dimensional dynamic damping coefficient Cd1 

with aspect ratio δ for different values of l1. It is observed that Cd1 increases 

rapidly for smaller values of δ (0<δ <5), though marginal increase in Cd1 is 

observed for larger values of δ. Further, it is observed that the effect of couple 

stress is to increase Cd1 as compared to the corresponding Newtonian case (l1 =0). 

The variation of Ws1 with λ for different values of permeability parameter ψ is 

depicted in the Figure 12. It is observed that, the effect of ψ is to decrease Ws1 as 

compared to the corresponding solid case (ψ=0). When the permeability is very 

high, the porous material becomes the main path of flow and hence decreases in 

Ws1.  

Further, it is observed that the critical value λc of λ, in which Ws1 attains the 

maximum value. The value λc is a function of the permeability parameter ψ, 

increases by increasing ψ. The variation of non-dimensional dynamic stiffness 

coefficient Sd1 with λ for different values of ψ is shown in the Figure 13. It is 

observed that as ψ increases, the value of Sd1 decreases. Figure 14 represents the 

variation of non-dimensional dynamic damping coefficient Cd1 with profile 

parameter λ for various values of ψ. It is observed that, the increase in the profile 

parameter λ, decreases in the value of Cd1. Also, observed that the larger values of 

λ (λ >2.0) have marginal effect in the variations of Cd1.  

7. Conclusions 

In this paper, we have introduced efficient B-spline biorthogonal wavelet multigrid 

schemes using intergrid operators based on B-spline biorthogonal wavelet filter 

coefficients. Here, we presented the numerical solution of Reynolds equation to 

show the applicability of the proposed scheme. To ensure the efficiency of the 

proposed scheme, first we considered the elliptic partial differential equation 

having exact solution. The efficiency and effectiveness of the proposed method is 

demonstrated through the results given tables and figures. Then, the proposed 

scheme is applied for the solution of Reynolds equation to show the applicability of 

the method. Hence the wavelet method is very convenient, efficient and has wide 

applications in the real world problems. 
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